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What should a keynote offer?

My choice:

Share my experiences with getting 
research inspiration from industrial 
projects
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Industrial projects: sneak preview
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Leaks in Vacuum Coffee Packs
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Wind Turbines
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ASML – Wafer Stepper Machines
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Prophesy – Predictive Maintenance
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Project Goals

Timely detect changes in 
percentages of leaks
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Timely predict upcoming 
failures

Detection of degradation of 
optical system

Adaptive and self-
configuring predictive 
maintenance system



Common topics

Projects share the following challenges
1. timely detect changes over time
2. predict upcoming events/conditions

We will treat these challenges from the viewpoint of 
SPC (Statistical Process Control), i.e. statistical 
techniques for monitoring changes over time (control 
is a historical misnomer).
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Basics of SPC
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Terminology

• Statistical process control (SPC)
• monitoring, no control
• monitoring with intervention

• Changepoint detection
• retrospective analysis 

• Surveillance
• monitoring without intervention

• Automatic Process Control (APC) / Engineering 
Process Control (EPC) 
• feedback control (“continuous intervention”)
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Terminology in Different Communities

• Statistical Process Control (industrial statistics, it is 
a historical misnomer)

• Anomaly detection (data mining)
• Concept drift (data mining)
• Surveillance (public health, usually no intervention 

possible)
• Changepoint analysis (econometrics/mathematical 

statistics, usually for the retrospective/off-line case)
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The Beginning – Shewhart's 1924 memo
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Shewhart Chart Basics

• observations/computed statistics come in one by one 
• decision at every observation/statistic
• red lines are "control" limits

(unfortunate historical name SPC = 
Statistical Process Control)

• stop when observation/statistics is
above UCL or below LCL (and then ...)

• this is not quite standard hypothesis
testing ("t-test")
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Common control charts
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Shewhart charts
EWMA = Exponentially Weighted Moving Average

Yi = λXi + (1− λ)Yi−1
originated from Bayesian setting (Shiryaev-
Roberts) , robust against deviations from
normality

CUSUM = Cumulative Sums Chart cumulative
sums with reflecting boundary at 0,

GLR = Generalized Likelihood Ratio Chart
sequential form of likelihood ratio tests

CCC = Cumulative Count of Conforming Chart  
originally for high-yield processes (time between 
events  or several events)



CUSUM Charts

• better at small persistent shifts than Shewhart charts
• does have memory
• asymptotically optimal (in some technical sense)
• ARL computations involve solving Fredholm integral 

equations ; simple discretizations
lead to Markov chain approaches
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SPC Toy model

Grouped observations (manufacturing context)
• 𝒀𝒀𝒊𝒊𝒊𝒊 ∼ 𝑵𝑵 𝝁𝝁𝒊𝒊, 𝝈𝝈𝟐𝟐 independent , 𝒊𝒊 = 𝟏𝟏, 𝟐𝟐, … , 𝒋𝒋 = 𝟏𝟏, … , 𝒏𝒏𝒊𝒊
• index i corresponds to equi-distant time intervals
• important special case: 𝒏𝒏𝒊𝒊 = 𝟏𝟏

“In-control situations”
𝜇𝜇0 = 𝜇𝜇1 = …

versus “out of-control  situations”
𝜇𝜇0 = 𝜇𝜇1 = … = 𝜇𝜇τ−1 , 𝜇𝜇𝜏𝜏 = 𝜇𝜇𝜏𝜏+1 = … = 𝜇𝜇0 + 𝛿𝛿
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Control Charts and Hypothesis Testing

Let 𝝉𝝉 be a parameter (if you are a frequentist) or a 
random variable (if you are a Bayesian)

Standard changepoint model (persistent change of the 
mean)

𝐻𝐻0 ∶ 𝜇𝜇0 = 𝜇𝜇1 = …
versus 
𝐻𝐻1 ∶ 𝜇𝜇0 = 𝜇𝜇1 = … = 𝜇𝜇𝜏𝜏−1, 𝜇𝜇𝜏𝜏 = 𝜇𝜇𝜏𝜏+1 = … = 𝜇𝜇0 + 𝛿𝛿

See Does and Schriever (1992) for more examples
These settings are not realistic.
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Change Scenarios 

There are more realistic changes than the persistent 
change of mean, e.g. 
• Gradual changes
• Chemical processes that cannot be kept a setpoint
• Trend reversals in business cycles
• Processes with feedback controllers (epidemic 

changes/window of opportunity)
• …

See Di Bucchianico and Van den Heuvel (2015).

Mathematics and Computer Science PAGE 1827-3-2019



Hypothesis Tests for Simple Hypotheses

Neyman-Pearson Lemma (hypothesis testing)
𝑯𝑯𝟎𝟎: 𝜽𝜽 = 𝜽𝜽𝟎𝟎 versus 𝑯𝑯𝒂𝒂: 𝜽𝜽 = 𝜽𝜽𝟏𝟏

Optimal test using likelihood ratio:

Λ𝒌𝒌 =
𝒇𝒇𝜽𝜽𝟏𝟏 𝒙𝒙𝟏𝟏 ⋯𝒇𝒇𝜽𝜽𝟏𝟏 𝒙𝒙𝒌𝒌
𝒇𝒇𝜽𝜽𝟎𝟎 𝒙𝒙𝟏𝟏 ⋯𝒇𝒇𝜽𝜽𝟎𝟎 𝒙𝒙𝒌𝒌

Adapting this setup to a sequential version leads to 
CUSUM charts in the case of testing of means for 
normal distributions  (see Frisén and De Maré (1991)).
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General Hypotheses - Example

𝑯𝑯𝟎𝟎: 𝜹𝜹𝟏𝟏 ≤ 𝝁𝝁𝒊𝒊 ≤ 𝜹𝜹𝟐𝟐 for all i  
versus
𝑯𝑯𝟏𝟏: 𝜹𝜹𝟏𝟏 ≤ 𝝁𝝁𝒊𝒊 ≤ 𝜹𝜹𝟐𝟐 (𝑖𝑖 = 𝟏𝟏,⋯ , 𝝉𝝉 − 𝟏𝟏) and 𝝁𝝁𝒊𝒊 < 𝜹𝜹𝟏𝟏 or 𝝁𝝁𝒊𝒊 > 𝜹𝜹𝟐𝟐
for 𝒊𝒊 = 𝝉𝝉, 𝝉𝝉 + 𝟏𝟏,⋯
Versions possible for several distributions.

Other versions possible (e.g., tool wear may be 
described with monotonicity constraints).

Tailor-made procedures may be derived using 
statistical theory
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Generalized Likelihood Ratio Tests

Procedures for the general scenarios with their 
complex null and alternative hypothesis structures 
may be obtained using GLR (with slight abuse of 
notation to indicate the hypotheses:

Λ𝒌𝒌 = max𝟏𝟏≤𝒊𝒊≤𝒌𝒌
∏𝒋𝒋=𝟏𝟏
𝒊𝒊 sup𝜽𝜽𝒋𝒋|𝑯𝑯𝟎𝟎𝒇𝒇𝜽𝜽𝒋𝒋 𝒙𝒙𝒋𝒋 ∏𝒋𝒋=𝒊𝒊+𝟏𝟏

𝒌𝒌 sup𝜽𝜽𝒋𝒋|𝑯𝑯𝟏𝟏𝒇𝒇𝜽𝜽𝒋𝒋 𝒙𝒙𝒋𝒋
∏𝒋𝒋=𝟏𝟏
𝒌𝒌 sup𝜽𝜽𝒋𝒋|𝑯𝑯𝟎𝟎𝒇𝒇𝜽𝜽𝒋𝒋 𝒙𝒙𝒋𝒋

Explicit expression may be obtained in several cases.
For hypotheses with monotonicity constraints one 
needs to use isotonic regression. 
Practical evaluation by restricting "max" in Λ𝒌𝒌 to a 
fixed window. See Di Bucchianico et al (2004).
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Detection Performance 

Desired performance:
• as quick as possible “alarm” when out-of-control
• as few as possible “false alarms” when in-control

Type I/II errors do not capture this. An appropriate 
description is  the “run length distribution”. 
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"in-control"

"out-of-control"

persistent change of the mean

UCL

LCL



Run Length Distribution

For Shewhart charts: both in-control and out-of-control 
run lengths have a geometric distribution.
Standard 3σ limits lead to ARL = 1/(2*0.00135) = 370.

Run length distributions are usually skewed, so looking
only at ARL (Average Run Length) may be misleading:
• SRL (Standard Deviation of Run Length)
• quantiles

There also issues with starting the run length at 0 
(conditional run lengths): see e.g. Kenett & Pollak 
(2012).
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Phase I - Phase II

Traditional setup from manufacturing:
• Phase I (pilot/training phase; retrospective change 

detection – setting of control limits)
• Phase II (on-line monitoring)

But many cases do not naturally have such a division.

Self-starting control charts have been developed that 
recursively estimate control limits.
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Coffee packs
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Coffee packs: industrial problem

• small leaks in vacuum seals may manifest 
themselves much later

• percentage of packs with leaks is very low (0.2 %)
• high volume production of coffee packs
• reduce time needed to detect 

increased percentage of leakages
• increase customer satisfaction
• reduce failure costs
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Coffee packs: statistical challenges

• leak detection device yields only yes/no result, so 
binary data (yes/no)

• standard Shewhart control charts are 
not appropriate because 𝒑𝒑 ≈ 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎:
• 3σ-limits incorrect since normal approximation is poor
• LCL for 3 σ-limits is negative unless n is large
• UCL is such that any leaking pack causes an alarm
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CCC = Cumulative Count of Conforming chart 

CCC rule: alarm  if 𝑿𝑿𝒊𝒊 < 𝑳𝑳𝑳𝑳𝑳𝑳
(too frequent failures indicate deterioration)

A variant of this is the CCC-r chart (below r=2)
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Run Lengths and Stopping Times

𝑵𝑵: = min{𝒊𝒊 𝑿𝑿𝒊𝒊 < LCL
Note the two different time scales:
1. the original time scale (number of coffee packs)
2. the index i of the control chart statistics 𝑿𝑿𝒊𝒊

ARL = E(N) cannot be used since different CCC-r
charts cannot be compared directly. 
Instead we use the distribution of ∑𝒊𝒊=𝟏𝟏𝑵𝑵 𝑿𝑿𝒊𝒊. 
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Expectation of Run Length Distribution

𝑵𝑵: = min{𝒊𝒊 𝑿𝑿𝒊𝒊 < 𝑳𝑳𝑳𝑳𝑳𝑳 is a stopping time w.r.t. 𝑿𝑿𝟏𝟏, 𝑿𝑿𝟐𝟐, …

Wald Formula  (version for stopping times)

𝑬𝑬 �
𝒊𝒊=𝟏𝟏

𝑵𝑵

𝑿𝑿𝒊𝒊 = 𝑬𝑬 𝑵𝑵 𝑬𝑬(𝑿𝑿)

Distribution is skewed, so only computing mean is not 
sufficient. 

Mathematics and Computer Science PAGE 3027-3-2019



Variance of Run Length Distribution

Blackwell-Girshick Formula
If N is independent of iid 𝑿𝑿𝟏𝟏, 𝑿𝑿𝟐𝟐, … with 𝝈𝝈𝟐𝟐 = 𝑽𝑽𝑽𝑽𝑽𝑽 𝑿𝑿𝒊𝒊 <
∞, then

𝑽𝑽𝑽𝑽𝑽𝑽 �
𝒊𝒊=𝟏𝟏

𝑵𝑵

𝑿𝑿𝒊𝒊 = 𝑬𝑬 𝑵𝑵 𝑽𝑽𝑽𝑽𝑽𝑽 𝑿𝑿 + 𝑽𝑽𝑽𝑽𝑽𝑽 𝑵𝑵 + 𝑬𝑬𝟐𝟐(𝑿𝑿)

This does not apply here because 𝑵𝑵 = min 𝒊𝒊 𝑿𝑿𝒊𝒊 < 𝑳𝑳𝑳𝑳𝑳𝑳

Correct formula for this specific choice of N

𝑽𝑽𝑽𝑽𝑽𝑽 �
𝒊𝒊=𝟏𝟏

𝑵𝑵

𝑿𝑿𝒊𝒊 =
𝝈𝝈𝟐𝟐

𝒑𝒑
− 𝝁𝝁𝟐𝟐

𝟑𝟑 − 𝒑𝒑
𝒑𝒑𝟐𝟐

+ 𝟐𝟐𝟐𝟐𝟐𝟐 𝑵𝑵�
𝒊𝒊=𝟏𝟏

𝑵𝑵

𝑿𝑿𝒊𝒊

where 𝒑𝒑 = 𝑷𝑷 𝑿𝑿𝒊𝒊 < 𝑳𝑳𝑳𝑳𝑳𝑳
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Results CCC-r charts coffee packs

We compared several scenarios with 𝒑𝒑𝒊𝒊𝒊𝒊 = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 and 
𝒑𝒑𝒐𝒐𝒐𝒐𝒐𝒐=0.008 . 
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Comparison of CCC-r charts with 3 leak detection devices

r LCL      ALIin SDLIin ALIout SDLIout
1             8        99.8       101.2          4.1             4.3
2         129      100.9       102.7          1.5             1.7
3         380      100.6       102.6          1.1 1.1
4         709      100.3       102.3          1.2             0.8
5       1087      100.2       102.0          1.4             0.7



Coffee packs: further research topics

• other stopping times:
• CCC-EWMA
• CCC-CUSUM
• self-starting versions
• … 

• incorporate incomplete inspection
• continuous time analogues
• overdispersed count data
• …
An extensive overview paper on control charts in this 
setting is Ali et al (2016).
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Wind turbines
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Wind turbines: industrial problem

Timely detection of tiny cracks that much later lead to 
severe damage
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Wind turbines: available sensor data

Monitoring of wind turbine using 4 min data
• power output
• temperatures
• vibrations
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Wind turbines: statistical challenges

• no Phase I (pilot) data available
• static control limits are not appropriate
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Regression Approach – Temperature
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Monitoring approach 1

• Linear regression model:  𝑌𝑌 = 𝑋𝑋𝑋𝑋 + ε , 𝜀𝜀 ∼ 𝑁𝑁(0, 𝜎𝜎2𝐼𝐼)
• 𝑌𝑌 is vector of univariate observations
• In-control period (baseline, Phase I): 𝑌𝑌1, … , 𝑌𝑌𝑚𝑚
• On-line period (Phase II): 𝑌𝑌𝑚𝑚+1, 𝑌𝑌𝑚𝑚+2, …
• Monitor (standardized) prediction residuals

𝑌𝑌𝑚𝑚+1 − �𝑌𝑌𝑚𝑚+1, 𝑌𝑌𝑚𝑚+2 − �𝑌𝑌𝑚𝑚+2, …

where �𝑌𝑌𝑚𝑚+𝑖𝑖 = 𝑥𝑥𝑚𝑚+𝑖𝑖
𝑻𝑻 𝛽̂𝛽(𝑚𝑚) with 𝛽̂𝛽(𝑚𝑚) the LS estimator 

based on 𝑌𝑌1, … , 𝑌𝑌𝑚𝑚
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Monitoring approach 1: issues

1. How to determine m (baseline/Phase I)?
2. How to monitor prediction residuals

a) residuals are dependent
b) what change (“out-of-control situation”) do we wish 

to detect?

Ad 2b) Possible setup for model 𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺
• null hypothesis: 𝜷𝜷 does not change
• alternative hypothesis: 𝜷𝜷 constant until 𝝉𝝉 , change to 
𝜷𝜷∗ afterwards
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Monitoring approach 2

• Linear regression model:  𝑌𝑌 = 𝑋𝑋𝑋𝑋 + ε , 𝜀𝜀 ∼ 𝑁𝑁(0, 𝜎𝜎2𝐼𝐼)
• 𝑌𝑌 is vector of univariate observations
• Monitor recursive residuals of Browne et al (1975), 

i.e. standardized versions of 𝑌𝑌𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽̂𝛽(𝑖𝑖−1)

Issues:
• no run length distribution / specification of change 

scenario (only type I error)
• might not be able to detect gradual changes (since 

regression parameters are re-estimated)
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Monitoring approach 3: fluctuation tests

• Linear regression model:  𝑌𝑌 = 𝑋𝑋𝑋𝑋 + ε , 𝜀𝜀 ∼ 𝑁𝑁(0, 𝜎𝜎2𝐼𝐼)
• 𝑌𝑌 is vector of univariate observations
• Monitor changes in parameter estimates (𝛽̂𝛽(𝑖𝑖)), rather 

than residuals

• Issues:
• no run length distribution (only type I error; asymptotic 

distribution of “fluctuation process” by FCLT, see Chu 
et al (1996) or Zeileis et al (2005))

• might not be able to detect gradual changes (since 
regression parameters are re-estimated)
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Prediction of 2014 failure
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Model Warnings for imminent failure

Nacelle temperature Oct-Nov 2013

Oil temperature Oct-Nov 2013

Bearing temperature Oct-Nov 2013

Gearbox temperature Oct-Nov 2013

Main gen. temperature Oct-Nov 2013

Starting gen. temperature Oct-Nov 2013

Power output main gen. Oct-Nov 2013

Power output starting gen. None
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Wind turbines: future research topics

• perform run length distribution comparisons between 
monitoring approaches

• multivariate monitoring 
• specification of out-of-control scenarios/alterative 

hypotheses
• combine control charts variable selection methods 

(lasso, least angle regression) see e.g. overview paper 
Capizzi (2015)

• develop online versions of Theil’s 1968 BLUS 
residuals (BLUS = Best Linear Unbiased Scalar 
Covariance) 

• use weighted regression (see. e.g Horvath et al (2004))
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ASML – Wafer Stepper Machines
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Optics
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Industrial problems

• Standstill of machine extremely costly
• Large number of machines at customers to be 

monitored
• Specific case: gradual degradation of optical 

performance through specific part
• Measurements are costly
• Not clear what to monitor
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Statistical challenges

• compete with machine learning approaches
• no Phase I/in-control 
• high dimensional data in the form of Zernike 

polynomials (measured in some way)
• lead time for detection
• optical system undergoes several feedback control 

actions 
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Zernike polynomials

• Zernike polynomials describe the aberrations of 
wavefronts of the lens.

• Any wavefront can be described by a linear 
combination of Zernike polynomials:

𝑾𝑾(𝜽𝜽, 𝝆𝝆) = �
𝒊𝒊=𝟏𝟏

∞

𝒂𝒂𝒊𝒊 ⋅ 𝒁𝒁𝒊𝒊(𝜽𝜽, 𝝆𝝆)

Mathematics and Computer Science PAGE 4927-3-2019



Zernike expansion 
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=1.3 *       +0.5*         -0.8*         +….



Zernike polynomials: orthogonality

Zernike polynomials are orthogonal (useful for 
statistical purposes) in a continuous sense.

Orthogonality with data is discrete orthogonality

Optimal designs for LS and Fourier 
estimation have been developed 
(Dette et al. (2007))

But: - circular designs are not practical
- company measures several wavefronts
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Main approach

• Apply PCA to find linear combinations of Zernike 
coefficients

• Add feedback control actions to variables to be 
monitored

• Apply self-starting control charts
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Results
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Statistics versus machine learning
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Statistics:
• good 

• “guaranteed performance”
• incorporate time

• not so good:
• flexibility (usually requires modelling)
• scalability 

Machine learning has opposite (dis)advantages.



Models

A common distinction is made between
1. predictive models
2. explanatory models

I feel that there is a need for third type of model:
3. benchmark models
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Lessons learned

1. Control actions contain useful information about 
degradation and should thus be used in monitoring

2. Dimension reduction should involve “linear” 
combinations of all parameters rather than choosing 
subsets

3. Prediction procedures should be tuned to classes of 
machines
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Wafer steppers: future research topics

• self-starting high-dimensional control charts
• hybrid approach:

• use statistics to find onset of gradual deteroriation
• use machine learning to find patterns / thresholds

• optimal grid within practical restrictions for Zernike 
coefficients

• estimation of RUL (remaining useful life)
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Prophesy
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Prophesy questions

• Estimate RUL (Remaining Useful Life) with 
uncertainty margins

• Automaticaly update maintenance plans based on 
continuous streams of sensor data (“predictive 
maintenance”/ “condition based maintenance”)
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Statistical challenges

• compete with machine learning approaches
• no Phase I/in-control period
• high dimensional, high frequency data
• few failures
• combine with maintenance optimization
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Comparison of SPC and CBM

• SPC

•has no failure
•has minimal maintenance to go from out-of-control to

in-control
•process continues even when out-of-control

• CBM

•usually no distinction between operating states
• several types of maintenance
• shut down during maintenance
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Role of monitoring

Level 1: Change Detection
• Detect if everything is working well

Level 2: RCA – Root Cause Analysis
• Analyze where the failure comes from

Level 3: RUL – Remaining Useful Life
• Calculate the RUL based on wear data
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Hybrid approach: uncertaintly
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• Machine learning to estimate RUL
• Degradation modelling with Wiener process with drift 

to estimate uncertainty



Prophesy: future research topics

• integration of SPC with CBM
• integrate SPC with RUL estimation
• estimate RUL with uncertainty margin
• use of knowledge of physical models
• …
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Conclusion
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Tips to get into contact

• network
• listen to problems
• contact R&D department of companies
• Data Science Center
• join other groups (industrial engineering, computer 

science,…)
• alumni
• …

Mathematics and Computer Science PAGE 6627-3-2019



Tips for success

• find champion within company
• use Master students
• try to set up “road map”
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Conclusions

Problems from industrial projects are a source for 
research topics in statistical monitoring that deviate 
from “standard settings”.

It seems worthwhile to investigate hybrid approaches 
combining statistics with machine learning 
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Future Directions

• network data
• high-dimensional data
• high-frequency data
• high volume data
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Network Data

Research has just begun for network data (mainly 
social networks and computer networks).

Challenges:
• model change scenarios (much more complicated 

than changes in the "mean")
• compute distribution of suitable statistics (e.g., 

degree/centrality measures)
• derive run length distributions under realistic 

network models (so that we know the performance)
• practical numerical evaluation of control charts
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High-Volume Data

• hypothesis testing: everything is significant
• use general hypothesis (cf. equivalence testing)
• scalability of algorithms
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