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What should a keynote offer?

My choice:

Share my experiences with getting
research inspiration from industrial
projects
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Industrial projects: sneak preview
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Leaks in Vacuum Coffee Packs
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Wind Turbines
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ASML — Wafer Stepper Machines
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Prophesy — Predictive Maintenance

E | CostBenefit = ~ PdMService = < Business ~  Mantenance ¢

Prophesy SO  analysis  Optimization ~ Modeling

Automatic Data
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Project Goals
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Timely detect changes in
percentages of leaks

PROPHESY

Adaptive and self-
configuring predictive
maintenance system
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Timely predict upcoming
failures

Detection of degradation of
optical system
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Common topics

Projects share the following challenges
1. timely detect changes over time
2. predict upcoming events/conditions

We will treat these challenges from the viewpoint of
SPC (Statistical Process Control), i.e. statistical

techniques for monitoring changes over time (control
IS a historical misnomer).
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Basics of SPC
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Terminology

« Statistical process control (SPC)
e monitoring, no control
e monitoring with intervention
 Changepoint detection
e retrospective analysis
« Surveillance
 monitoring without intervention

« Automatic Process Control (APC) / Engineering
Process Control (EPC)

o feedback control (“continuous intervention”)
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Terminology in Different Communities

« Statistical Process Control (industrial statistics, it is
a historical misnomer)

« Anomaly detection (data mining)
e Concept drift (data mining)

« Surveillance (public health, usually no intervention
possible)

 Changepoint analysis (econometrics/mathematical
statistics, usually for the retrospective/off-line case)
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The Beginning — Shewhart's 1924 memo

Case 18013

WAS-724-5-16-24=FQ TYPE APPARATUS
INSPECTED FOR

TOLERANCE P

MR. R. L. JONES:-

A few days ago, you mentioned some of the problems

connected with the development of an acceptable form of in- 4 3 : 77 - —
spection report which might be modified from time to time, in 5 = % 5 :t- % 3 2 e 5] 3 ﬁ_;J
order to give at a glance the greatest amount of accurate in= S & 3 < 2 35 3 2 R &
formation. m MUMBER
The attached form of report is designed to indicate MANUFACTURED
whether or not the observed variations in the percent of de- NUMBER
fective apparatus of a given type are significant; that is, INSPECTED
to indicate whether or not the product is satisfactory. The ol
theory underlying the method of determining the significance ¥ e
of the variations in the value of p is somewhat involved when . /
considered in such a form as to cover practically all types =~ /
of problems. I have already started the preparation of a 2 i
series of memoranda covering these points in detail. Should 'é'u' d \
it be found desirable, however, to make use of this form of 260% |P
chart in any of the studies now being conducted within the g
Inspection Department, it will be possible to indicate the g
method to be followed in the particular examples. i w
* own
W. A. SHEWHART. SHOL

Ene.:
Form of Report.
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Shewhart Chart Basics

¢ observations/computed statistics come in one by one
« decision at every observation/statistic

* red lines are "control" limits
(unfortunate historical name SPC = I
Statistical Process Control) | R

- stop when observation/statistics is Ltz '
above UCL or below LCL (and then ...)"~ «{:

- this is not quite standard hypothesis =7
testing ("t-test")
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94_

T T T T T T
102 112 122 132 142 152
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Common control charts

Shewhart charts *

EWMA = Exponentially Weighted Moving Average o . e h ll
Yi=AXi+ (1= A)Yia oM :‘.l".:",.“\ :
originated from Bayesian setting (Shiryaev- TR ere
Roberts) , robust against deviations from ¢ ¢ ‘.\,' p \-,’
normality ¢

CUSUM = Cumulative Sums Chart cumulatve ———————————-
sums with reflecting boundary at O,

GLR = Generalized Likelihood Ratio Chart /
sequential form of likelihood ratio tests o
. _ ¥
CCC = Cumulative Count of Conforming Chart Nl f
originally for high-yield processes (time between i

events or several events)

I U e Eindhoven
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CUSUM Charts

SN > >

!

change point

better at small persistent shifts than Shewhart charts
does have memory
asymptotically optimal (in some technical sense)

ARL computations involve solving Fredholm integral
equations ; simple discretizations
lead to Markov chain approaches TU/e 3.
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SPC Toy model

Grouped observations (manufacturing context)
e Y;; ~ N(u;,0%) independent ,i=1,2,..,j=1,..,n
e Index I corresponds to equi-distant time intervals
e Important special case: n; =1

“In-control situations”

MO — Ml — 'R
versus “out of-control situations”
Ho = M = o =1 Uy = Hgp1 = oo = Ug + O
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Control Charts and Hypothesis Testing

Let T be a parameter (if you are a frequentist) or a
random variable (if you are a Bayesian)

Standard changepoint model (persistent change of the

mean)
Hy: pg = 3 = ..
Versus
Hy:py =t = o =leoqs by = Ugg1 = oo = Yo + 0

See Does and Schriever (1992) for more examples
These settings are not realistic. TU /e e
e EI[:I iﬂ::{s‘ﬁ; of Technology
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Change Scenarios

There are more realistic changes than the persistent
change of mean, e.q.

e Gradual changes
Chemical processes that cannot be kept a setpoint
Trend reversals in business cycles

Processes with feedback controllers (epidemic
changes/window of opportunity)

See Di Bucchianico and Van den Heuvel (2015).
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Hypothesis Tests for Simple Hypotheses

Neyman-Pearson Lemma (hypothesis testing)
Hy,: 8 =0yversus H,: 6 =04

Optimal test using likelihood ratio:

_ fel(x1) “'fel(xk)

P = feo(x1) '“feo(xk)

Adapting this setup to a sequential version leads to
CUSUM charts in the case of testing of means for
normal distributions (see Frisén and De Maré (1991)).

I U e Eindhoven
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General Hypotheses - Example

H0:51 < Hi < 62 for all i
Versus

H1:51 SﬂlS(Sz (i=1,"’,T—1) and I"i<61 0ru,~>62
fori=t,t+1,-

Versions possible for several distributions.

Other versions possible (e.g., tool wear may be
described with monotonicity constraints).

Tailor-made procedures may be derived using
StatiStical theory TU Technische Universiteit
e EI[:I iﬂ::{s‘ﬁ; of Technology
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Generalized Likelihood Ratio Tests

Procedures for the general scenarios with their
complex null and alternative hypothesis structures
may be obtained using GLR (with slight abuse of
notation to indicate the hypotheses:
] k
j=15UPq; 1, S 6, () i1 Supg;|u, fe; (/)
k

H]‘:l Sllp9].|H0f9].(xj)

Explicit expression may be obtained in several cases.

For hypotheses with monotonicity constraints one
needs to use isotonic regression.

Practical evaluation by restricting "max" in A, to a
fixed window. See Di Bucchianico et al (2004).
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Detection Performance

"out-of-control" \

Desired performance:
e as quick as possible “alarm” when out-of-control
- as few as possible “false alarms” when in-control

Type l/ll errors do not capture this. An appropriate
description is the “run length distribution”.

Technische Universiteit
e Eindhoven
University of Technology
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Run Length Distribution

For Shewhart charts: both in-control and out-of-control
run lengths have a geometric distribution.

Standard 3o limits lead to ARL = 1/(2*0.00135) = 370.

Run length distributions are usually skewed, so looking
only at ARL (Average Run Length) may be misleading:

 SRL (Standard Deviation of Run Length)
e quantiles

There also issues with starting the run length at O
(conditional run lengths): see e.g. Kenett & Pollak
(2012). TU/e & s
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Phase | - Phase I

Traditional setup from manufacturing:

 Phase | (pilot/training phase; retrospective change
detection — setting of control limits)

* Phase Il (on-line monitoring)
But many cases do not naturally have such a division.

Self-starting control charts have been developed that
recursively estimate control limits.
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Coffee packs

Mathematics and Computer Science

s 3

pc | DOUWE | DOuwe | |

FG ‘E-GBERTS \EGBERTS |1—:_

Technische Universiteit
Eindhoven
University of Technology

27-3-2019 PAGE 25



Coffee packs: industrial problem

« small leaks in vacuum seals may manifest
themselves much later

* percentage of packs with leaks is very low (0.2 %)
* high volume production of coffee packs

- reduce time needed to detect 7 e
iIncreased percentage of leakages W4 \E%ggg;s l%gg}g’fs |£_

. increase customer satisfaction e— f}»‘% i
- reduce failure costs : |
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Coffee packs: statistical challenges

» leak detection device yields only yes/no result, so
binary data (yes/no)

e standard Shewhart control charts are
not appropriate because p = 0.002:
o 3o-limits incorrect since normal approximation is poor
« LCL for 3 o-limits is negative unless n is large
« UCL is such that any leaking pack causes an alarm

P e L0 Technische Universiteit
e Eindhoven
University of Technology
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CCC = Cumulative Count of Conforming chart

< > < > < B e

X1 X2 X3 X4

CCC rule: alarm if X; < LCL
(too frequent failures indicate deterioration)

A variant of this is the CCC-r chart (below r=2)

< > < >

X1 X2
TU
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Run Lengths and Stopping Times
0000000000000 00
< > < > < =
X, X, X, X,
N: = min{i|X; < LCL}
Note the two different time scales:

1. the original time scale (humber of coffee packs)
2. theindex i of the control chart statistics X;

ARL = E(N) cannot be used since different CCC-r
charts cannot be compared directly.

Instead we use the distribution of ¥V, X;.

TU
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Expectation of Run Length Distribution

N:=min{i|X; < LCL}is a stopping time w.r.t. X{, X5, ...

Wald Formula (version for stopping times)

N

E ZX,- = E(N)E(X)

i=1

Distribution is skewed, so only computing mean is not
sufficient.

Technische Universiteit
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Variance of Run Length Distribution

Blackwell-Girshick Formula

If N is independent of iid X4, X5, ... with 6% = Var(X;) <
oo, then

N
Var <Z X,-> = E(N)Var(X) + Var(N) + E*(X)

i=1

This does not apply here because N = min{i|X; < LCL}

Correct formula for this specific choice of N

N 2 N
_0"_ (3P .
Var(ZXl)— — ( 2 )+2ME<NZX1>
where p = P(X; < LCL) TU

Mathematics and Computer Science
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Results CCC-r charts coffee packs

We compared several scenarios with p;,, = 0.002 and
Pou:=0.008 .

Comparison of CCC-r charts with 3 leak detection devices

r LCL  ALlin SDLIin ALlout SDLlout
1 8 99.8 101.2 4.1 4.3
2 129  100.9 102.7 1.5 1.7
3 380 100.6 102.6 1.1 1.1
Z /09 100.3 102.3 1.2 0.8
5 1087  100.2 102.0 1.4 0.7

Technische Universiteit
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Coffee packs: further research topics

other stopping times:
« CCC-EWMA
e CCC-CUSUM
e self-starting versions

Incorporate incomplete inspection
continuous time analogues
overdispersed count data

An extensive overview paper on control charts in this
Setting iS Ali et al (2016)' TU Technische Universiteit
e EI[:I iﬂ::{s‘ﬁ; of Technology
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Wind turbines
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Wind turbines: industrial problem

Timely detection of tiny cracks that much later lead to
severe damage

Google images
Technische Universiteit
e Eindhoven
University of Technology
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Wind turbines: available sensor data

Monitoring of wind turbine using 4 min data

* power output |
° temperatures
e Vvibrations
Wind
Vane
Drive Anemomefer\l?/
Shaft  Gearbox Vi
Rotor g

Controllers
Yaw Mechanical Generator

hnisch i itei
Matﬂr Bmkg TU e Té:dr'l‘f‘:;e: Universiteit

University of Technology
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Wind turbines: statistical challenges

* no Phase | (pilot) data available
 static control limits are not appropriate

30-

MNacelleTemperature
a3
[==]

20
Environmental Temperature
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ression Approach — Temperature

=

MNacelleTemperature
=

residuals

Mathematics and Computer Science
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Group summary statistics
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Group

Number of groups = 30775
Center = 0.0651138 LCL = -3.451748
StdDev = 0.2284303 UCL = 3.125617

Number beyond limits = 191
Number violating runs = 0
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Monitoring approach 1

Linear regression model: Y =XB +¢,&~ N(0,0%])
Y is vector of univariate observations

In-control period (baseline, Phase |): Yy, ..., Y,
On-line period (Phase l): Y41, Y42, -

Monitor (standardized) prediction residuals

Yim+1 = Ymav, Yma2 — Yma2s

where ¥,,4; = %}y Bamy With By the LS estimator
based onY, .., Y,

Technische Universiteit
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Monitoring approach 1: issues

1. How to determine m (baseline/Phase I)?

2. How to monitor prediction residuals
a) residuals are dependent

b) what change (“out-of-control situation”) do we wish
to detect?

Ad 2b) Possible setup for model Y = X + ¢
* null hypothesis: g does not change

 alternative hypothesis: # constant until T, change to
p* afterwards -
T U e EI[:I iﬂ::{s‘ﬁ; of Technology

Mathematics and Computer Science 27-3-2019 PAGE 40




Monitoring approach 2

* Linear regression model: Y =XB +¢,&~ N(0,0°])
e YIs vector of univariate observations

* Monitor recursive residuals of Browne et al (1975),
I.e. standardized versions of Y; — xiT,[?(i_l)

Issues:

 no run length distribution / specification of change
scenario (only type | error)

 might not be able to detect gradual changes (since
regression parameters are re-estimated)

Technische Universiteit
e Eindhoven
University of Technology

Mathematics and Computer Science 27-3-2019 PAGE 41




Monitoring approach 3: fluctuation tests

* Linear regression model: Y =XB +¢,&~ N(0,0°])
e YIs vector of univariate observations

* Monitor changes in parameter estimates (,[?(l-)), rather
than residuals

* |ssues:

 no run length distribution (only type | error; asymptotic
distribution of “fluctuation process” by FCLT, see Chu
et al (1996) or Zeileis et al (2005))

 might not be able to detect gradual changes (since
regression parameters are re-estimated)

Technische Universiteit
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Prediction of 2014 failure

Model Warnings for imminent failure

Nacelle temperature

Oct-Nov 2013

Oil temperature

Oct-Nov 2013

Bearing temperature

Oct-Nov 2013

Gearbox temperature

Oct-Nov 2013

Main gen. temperature

Oct-Nov 2013

Starting gen. temperature

Oct-Nov 2013

Power output main gen.

Oct-Nov 2013

Power output starting gen.

None

Mathematics and Computer Science
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Wind turbines: future research topics

perform run length distribution comparisons between
monitoring approaches

multivariate monitoring

specification of out-of-control scenarios/alterative
hypotheses

combine control charts variable selection methods
(lasso, least angle regression) see e.g. overview paper
Capizzi (2015)

develop online versions of Theil’s 1968 BLUS
residuals (BLUS = Best Linear Unbiased Scalar
Covariance)

use weighted regression (see. e.g Horvath et al (2004))
TU/je &, ...
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ASML — Wafer Stepper Machines
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Industrial problems

« Standstill of machine extremely costly

« Large number of machines at customers to be
monitored

« Specific case: gradual degradation of optical
performance through specific part

 Measurements are costly
 Not clear what to monitor

Technische Universiteit
e Eindhoven
University of Technology
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Statistical challenges

« compete with machine learning approaches
* no Phase l/in-control

* high dimensional data in the form of Zernike
polynomials (measured in some way)

* lead time for detection

« optical system undergoes several feedback control
actions

Technische Universiteit
e Eindhoven
University of Technology
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Zernike polynomials

« Zernike polynomials describe the aberrations of
wavefronts of the lens.

 Any wavefront can be described by a linear
combination of Zernike polynomials:

W(,p) = ) a;-2,6,p) 3

i=1 P 30
- ®
18 1 2 - . 2

9 23
- '. ' - ' " '\
& s H
¥ ¥\ b '
50 LA A A
27 28 23 30 3 M 32
- >~ -
™ ;
. . . - L . ‘ »
- » — - - L
5-foil 4-foil 3-foil astigmatism coma spherical
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Zernike expansion

S EREEEO0000

5-foil 4-foil 3-foil astigmatism coma spherical

TU
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Zernike polynomials: orthogonality

Zernike polynomials are orthogonal (useful for
statistical purposes) in a continuous sense.

Orthogonality with data is discrete orthogonality

Optimal designs for LS and Fourier A
estimation have been developed H P
(Dette et al. (2007)) AT

But: - circular designs are not practical 41—~

- company measures several wavefronts
TU/e G,
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Main approach

« Apply PCA to find linear combinations of Zernike
coefficients

 Add feedback control actions to variables to be
monitored

« Apply self-starting control charts

Technische Universiteit
e Eindhoven
University of Technology
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PCA
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Statistics versus machine learning

Statistics:

e good
e “guaranteed performance”
e Incorporate time

* not so good:
 flexibility (usually requires modelling)
o scalability

Machine learning has opposite (dis)advantages.

Technische Universiteit
e Eindhoven
University of Technology

Mathematics and Computer Science 27-3-2019 PAGE 54




Models

A common distinction is made between
1. predictive models
2. explanatory models

| feel that there is a need for third type of model:
3. benchmark models

Technische Universiteit
e Eindhoven
University of Technology
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| essons learned

1. Control actions contain useful information about
degradation and should thus be used in monitoring

2. Dimension reduction should involve “linear”
combinations of all parameters rather than choosing
subsets

3. Prediction procedures should be tuned to classes of
machines

Technische Universiteit
e Eindhoven
University of Technology
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Wafer steppers: future research topics

self-starting high-dimensional control charts

hybrid approach:
e use statistics to find onset of gradual deteroriation
e use machine learning to find patterns / thresholds

optimal grid within practical restrictions for Zernike
coefficients

estimation of RUL (remaining useful life)

Technische Universiteit
e Eindhoven
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Prophesy

= Technische Universiteit
[ Maintenance object Em‘dhm(en
University of Technology
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Prophesy guestions

« Estimate RUL (Remaining Useful Life) with
uncertainty margins

« Automaticaly update maintenance plans based on
continuous streams of sensor data (“predictive
maintenance”/ “condition based maintenance”)

Technische Universiteit
e Eindhoven
University of Technology
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Statistical challenges

compete with machine learning approaches
no Phase l/in-control period

high dimensional, high frequency data

few failures

combine with maintenance optimization

Technische Universiteit
e Eindhoven
University of Technology
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Comparison of SPC and CBM

» SPC

* has no failure

* has minimal maintenance to go from out-of-control to
In-control

* process continues even when out-of-control

- CBM

* usually no distinction between operating states
* several types of maintenance

* shut down during maintenance TU /e i
e EI[:I iﬂ::{s‘ﬁ; of Technology
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Role of monitoring

Level 1. Change Detection

e Detect if everything is working well
Level 2: RCA — Root Cause Analysis

 Analyze where the failure comes from
Level 3: RUL — Remaining Useful Life

e Calculate the RUL based on wear data

Change detection

] 7
103 ?W“W\
102 T T T T T ;\ T T T . i L
40 60 80 100 120 140 160 180 200 'I' U E:zaf::: Universiteit
e University of Technology
[{F n
time
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Hybrid approach: uncertaintly

 Machine learning to estimate RUL

« Degradation modelling with Wiener process with drift
to estimate uncertainty

xj‘ b —’ - g
' "’WWWW‘ % —Q\ . Wiener Density probability
1, \\ propagation value | distribution for
mew n, RUL] '\-Z%, mode uncertainty
", T 2 . >,
X N
R
vm,mw Ay n . T
Initial N
G EM.MS: M‘ww M’W‘L ’Vl‘w 5K o \\m‘?«.
©
I WWM ————— Y, 0 S \\ w ——
I MWMW "w|nformation flow 05 Information | N|& \ Information flow
ama Sl 1, L4 y f| b \WN‘ \
! WM% A wptlyer  flow : \
anw Tw WWW vl \ \\
Sensor 16 Xl I‘
(] layn' \\ ‘ \
M — ] Xy (actrve nodes) L \
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g M. - WWW ;:i‘:m RUL pred\ctor _ Actual failure RUL prediction at time s
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Prophesy: future research topics

Integration of SPC with CBM
Integrate SPC with RUL estimation
estimate RUL with uncertainty margin
use of knowledge of physical models

Technische Universiteit

I U e Eindhoven
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Conclusion

Technische Universiteit
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Tips to get into contact

* network

 listen to problems

« contact R&D department of companies
« Data Science Center

 Join other groups (industrial engineering, computer
science,...)

o alumni

Technische Universiteit
e Eindhoven
University of Technology
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Tips for success

* find champion within company
* use Master students
e try to set up “road map”

Technische Universiteit
e Eindhoven
University of Technology
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Conclusions

Problems from industrial projects are a source for
research topics in statistical monitoring that deviate
from “standard settings”.

It seems worthwhile to investigate hybrid approaches
combining statistics with machine learning
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Future Directions

* network data
high-dimensional data
high-frequency data

* high volume data
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Network Data

Research has just begun for network data (mainly
social networks and computer networks).

Challenges:

 model change scenarios (much more complicated
than changes in the "mean")

« compute distribution of suitable statistics (e.qg.,
degree/centrality measures)

« derive run length distributions under realistic
network models (so that we know the performance)

« practical numerical evaluation of control charts
TU/e i o,
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High-Volume Data

* hypothesis testing: everything is significant
* use general hypothesis (cf. equivalence testing)
« scalability of algorithms
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