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Preface
This volume presents the extended abstracts of the talks contributed to the 9

th Work-
shop on Stochastic Models and Their Applications (March 3-6, 2009). The scientific
committee thanks all authors for their valuable contribution. This workshop was
organized by the Institute of Statistics at RWTH Aachen University. As in previ-
ous years, it is devoted to reliability, sequential change-point analysis, lifetime and
survival analysis, time series analysis, and applications in engineering and computer
science.

However, various stochastic models and methods encountered in these fields are also
employed and applied to solve statistical problems and analyse data in finance, and
vice versa. This particularly applies to models and methods from modern time series
and regression analysis. Thus, we organized an integrated Spring School on Time
Series in Finance and Engineering consisting of three additional lectures on these
issues. The lectures highlight nonparametric, semiparametric, and parametric ap-
proaches and discuss their role in contemporary research. Although they particularly
address graduate students, Ph.D. students and PostDocs, we hope that all partici-
pants interested in these issues will benefit.

We hope you enjoy your stay and the talks.

Aachen, March 1, 2009

Ansgar Steland.



Acknowledgements
The Spring School gratefully acknowledges financial support by RWTH’s fund "Un-
dergraduates into Research", a measure financed by the German Excellence Initiative.

Logo design by André Weimar (http://www.andreweimar.de), organized by A. Thrun.

We thank H. Satvat and H. Schottmüller for technical support.



Scientific Committee

Uwe Jensen (University of Hohenheim, Germany)

Mirosław Pawlak (University of Manitoba, Canada)

Ansgar Steland (RWTH Aachen University, Germany)

Local Organizing Committee

M. Abujarad (Institute of Statistics)

E. Cramer (Institute of Statistics)

O. Holtemöller (Faculty of Business and Economics)

U. Kamps (Institute of Statistics)

R. Mathar (Institute for Theoretical Information Technology and UMIC)

H. Ney (Chair of Computer Science 6)

A. Steland (Institute of Statistics)



Secretary and Address

Ms. Simone Gerwert
Institute of Statistics
RWTH Aachen University
D-52056 Aachen, Germany

Fon: +49-241-80-94571
Fax: +49-241-80-92130

e-mail: gerwert@stochastik.rwth-aachen.de
URL: http://sma2009.rwth-aachen.de/home.html



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Scientific Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstracts

1 Nonlinear Locally Weighted Kriging Prediction for Spatio-Temporal
Environmental Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Olha Bodnar, Wolfgang Schmid

2 Surveillance of the Covariance Matrix Based on the Properties of
the Singular Wishart Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Olha Bodnar, Taras Bodnar, Yarema Okhrin

3 Progressively Type-II Censored Lifetime Experiments . . . . . . . . . . . . . . . . . . . . . . . . 5
Marco Burkschat

4 Estimators and Tests based on Likelihood Depth for Copulas and
the Weibull-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Liesa Denecke

5 Multiple Change-Point Estimation with U-Statistics . . . . . . . . . . . . . . . . . . . . . . . . 8
Maik Doering

6 Resampling Approach to the Estimation of Stochastic System Models . . . . . . . 10
Maxim Fioshin

7 The Resampling Approach to the Estimation of a Reliability Model
Based on Shot-Noise Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Helen Fioshina

8 A Prediction Problem in Interval-Censored Nonhomogeneous
Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



Jürgen Franz

9 Risk-Adjusted Monitoring of Time to Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Axel Gandy

10 Nonstationary-Volatility Robust Panel Unit Root Tests and
the Great Moderation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Christoph Hanck

11 Identifying Sources of Business Cycle Fluctuations in Germany 1975-1998 . . 18
Oliver Holtemöller, Torsten Schmidt

12 Two-Sample Survival Tests with Estimated Scores . . . . . . . . . . . . . . . . . . . . . . . .19
Arnold Janssen

13 On Change-Point Models in Survival Analysis with Applications in Reliability20
Uwe Jensen

14 Bayes Sequential Estimation for a Time-Transformed Exponential Model . . . 22
Alicja Jokiel-Rokita

15 Optimal General Maintenance for Discrete Lifetime Distributions . . . . . . . . . . 24
Waltraud Kahle

16 Two-Dimensional Diffusion Processes as Models in Lifetime Studies . . . . . . . . 26
Mario Lefebvre

17 On Estimation of Parameters of Nonhomogeneous Poisson Process
Models for Software Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Alicja Jokiel-Rokita, Ryszard Magiera

18 Stochastic Modelling for Speech Recognition and Language Translation . . . . 30
Hermann Ney

19 Modeling and Forecasting Realized Volatility via State-Space Representation 32
Vasyl Golosny, Iryna Okhrin, Wolfgang Schmid

20 Semiparametric Inference with Applications to Image Symmetry and
Nonlinear Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



Mirosław Pawlak

21 Hunting For The Best Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Mirosław Pawlak, Ewaryst Rafajłowicz, Ansgar Steland

22 Systems with n Levels of Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Christoph Riethmüller

23 Reliability Centered Design - Method for Design of Products
of Individual Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Henrik Schnegas

24 Dimensionality Reduction Using Space-Filling Curves with Applications
to Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Ewa Skubalska-Rafajłowicz

25 On the Reaction Time of Moving Sum Detectors . . . . . . . . . . . . . . . . . . . . . . . . .49
Josef G. Steinebach

26 On Local Linear Detectors for Trend Surveillance in Engineering and Finance 51
Ansgar Steland

27 Detection of Stationarity Errors in a Linear Regression Model
with an I(1)-Regressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Sabine Teller

28 Monitoring of First-Order Integer-Valued Autoregressive Processes
of Poisson Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Christian Weiß, Murat Caner Testik

29 Surveillance of the Risk Behaviour of a Time Dependent Process . . . . . . . . . .57
Svitlana Zabolotska, Wolfgang Schmid

30 Specifications for Prediction Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Luis Zitzmann

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60





Nonlinear Locally Weighted Kriging Prediction for
Spatio-Temporal Environmental Processes

Olha Bodnar Department of Statistics, European University Viadrina, Germany
Wolfgang Schmid Department of Statistics, European University Viadrina, Germany

Abstract: In the paper a non-linear interpolation procedure for the spatial prediction
of an environmental process is proposed. The suggested interpolation is based on the lo-
cally weighted scatterplot smoothing method (c.f. [1]). This approach is applied to a
non-linear spatio-temporal model. In an empirical study the PM10 concentration in the
Berlin-Brandenburg region of Germany is considered. It is shown that the local approach
permits a more structured interpolation of the air pollution.

1 Introduction
The prediction of the values of a spatio-temporal environmental process at sites,
where no station of the monitoring network is available, is an important problem for
environmental statistics today. Usually, the linear kriging predictor is used, which
is obtained by minimizing the mean squared error (see, e.g. [3], [5]). The problem
of an optimal network design for spatial interpolation using linear kriging predic-
tor is discussed in [5]. The author dealt with the problem, when the parameters of
the spatio-temporal process are unknown and have to be estimated before the lin-
ear predictor is constructed. The problem of separable approximations of space-time
covariance matrices is considered in [3]. This procedure is used to reduce the di-
mensionality of the inverse covariance matrix arising in the equation of the linear
predictor.

In this paper we propose a new approach for interpolating spatial data. The
suggested approach is based on the idea of locally weighted regression and smoothing
scatterplots. It allows us to derive a non-linear spatial interpolation of environmental
data. The main advantages of the approach are: (1) The LOESS predictor does not
require any specification of the prediction function. Thus, it is fully non-parametric
in this context. (2) It is more flexible than the linear predictor, usually, used in
the environmetrics literature. (3) Because not all monitoring stations are used for
calculating the prediction in a given site the dimension of the problem is reduced and
this leads to a simpler determination of the inverse covariance matrix.

2 The method
In the present paper, we propose a non-linear predictor for spatial prediction which is
based on the idea of the locally weighted scatterplot smoothing (LOESS) regression
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model (see, e.g. [1]). A subset of stations of the monitoring network is used which
are located nearest to the site, where the prediction has to be done. This approach
allows us to define a non-linear predictor without specifying an exact expression of
its functional form and to apply it to the spatial prediction of non-stationary spatio-
temporal processes. Because only a subset of the stations of the monitoring network is
taken into account for each site, the suggested approach reduces the dimensionality of
the inverse covariance matrix used in the predictor’s expression. In the paper, we also
extend the general spatio-temporal process of [2] to a non-linear one and apply the
LOESS predictor to the new process. In order to estimate the unknown parameters of
the suggested process, the maximum likelihood method is applied which is performed
using the iterative procedures of the generalized EM algorithm (see, e.g., [4]).

3 Example
The suggested approach is used to construct a PM10 mapping for the Berlin-Brandenburg
region in Germany. In the empirical study, we compare the LOESS predictor with
the linear predictor. We interpolate the concentration of the PM10 in the Berlin-
Brandenburg region based on both predictors. Daily data from 2007 for the Berlin-
Brandenburg monitoring network is used. We observe that the LOESS predictor is
much more flexible than the linear predictor and it is more suitable to detect local
changes. Consequently this approach seems to be of great interest in practice.

References
[1] Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scat-

terplots, Journal of the American Statistical Association, 74: 829-836.

[2] Fassò, A. and Cameletti, M. (2007). A general spatio-temporal model for envi-
ronmental data. Technical report, Graspa - The Italian Group of Environmental
Statistics - www.graspa.org, 27.

[3] Genton, M.G. (2007). Separable approximations of space-time covariance matri-
ces. Environmetrics, 18, 681-695.

[4] McLachlan, G. J., and Krishnan, T. (1997). The EM Algorithm and Extensions,
Wiley: New York.

[5] Zimmerman, D. L. (2006). Optimal network design for spatial prediction, co-
variance parameter estimation, and empirical prediction, Environmetrics, 17:
635-652.
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Surveillance of the Covariance Matrix Based on the
Properties of the Singular Wishart Distribution

Olha Bodnar Department of Statistics, European University Viadrina, Germany
Taras Bodnar Department of Statistics, European University Viadrina, Germany
Yarema Okhrin Department of Economics, University of Bern, Switzerland

Abstract: In this paper we develop a methodology which allows applying the standard
monitoring techniques for the mean behavior of Gaussian processes in the detection of shifts
in the covariance matrix. Moreover, the proposed methodology not only allows the use of
an estimator of the covariance matrix based on a single observation, but it also outperforms
existing ones according to an extensive simulation study.

1 Introduction
Statistical process control methods play an important role in quality improvement.
They have been widely applied in Engineering for a long time. The aim is to detect
a structural change in the process of interest as soon as possible after its occurrence.
However, this problem setting is also important in other fields and recently several
papers discussed the applications of sequential procedures to Economics, Medicine,
Chemistry, and Finance. The main tools of statistical process control are control
charts. A control chart is characterized by a control statistic which is updated using
current information at each time point.

Note that usually control charts are developed to detect shifts in the mean behav-
ior of the process. Application to other areas makes the monitoring of the variance or
the covariance matrix increasingly important. In general we can apply the techniques
of the mean charts to different volatility measures. Usually squared observations, their
logarithms or other transformations are used. This leads, however, to non-standard
distributions of the control statistics and substantially complicates the monitoring
process. This fact is even more critical in the multivariate case due to a large number
of the components in the covariance matrix. In this paper we introduce a new tech-
nique, which allows us to apply the standard control charts for the mean directly to
monitor the variance of a Gaussian vector. Moreover, the method can be applied to
the estimators of the covariance matrix based on a single recent observation.

2 The method
As an estimator of the covariance matrix we use the point estimator based on a single
observation, i.e. at time point t the covariance matrix is estimated by V

t

= X
t

X0
t

.
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The matrix V
t

follows a singular Wishart distributed V
t

ª W
p

(1,ß) (see, e.g. [1]),
where ß = ß0 if the process is in control and ß = ß¢ if the process is out of control.
Its rank is equal to one with probability one in both cases. It is not new to exploit the
unbiased point estimator V

t

for monitoring purposes. In [3] it is used V
t

to update
the matrix variate EWMA recursion.

However, the standard control schemes cannot be directly applied to the point
estimator V

t

. For the EWMA chart, the variance of the control statistic has to
be computed and this is a nontrivial task. Moreover, because the distribution of
the control statistic is not symmetric, the two-sided EWMA chart for the variance
depends on two critical values (see, e.g. [2]). This generates additional computational
difficulties. In this paper we use the properties of the singular Wishart distribution to
transform V

t

to a set of Gaussian vectors. Then the mean charts can be immediately
applied to monitoring the shifts in the variance.

3 Example
Using a Monte Carlo simulation study, we compare the derived control charts with the
benchmark charts used to detect changes in the covariance matrix of the multivariate
normal distribution. As the performance measures the average run length and the
maximum expected delay are used. The simulation study shows that the proposed
technique has a good performance. However, it is not possible to provide a unique
ranking of the control procedures. While for positive changes in the variances the
best results are reached the MC2 and the MEWMA control charts, for negative shifts
the M1A2 and M1z2 are the best charts. For positive changes in the correlation the
best results are obtained by the MC1 and the MCUSUM schemes.

References
[1] Bodnar, T. and Okrin, Y. (2008). Properties of the partitioned singular, inverse

and generalized inverse Wishart distribution, Journal of Multivariate Analysis,
99, 2389-2405.

[2] Chan, L.K. and Zhang, J. (2001). Cumulative sum control charts for the covari-
ance matrix, Statistica Sinica, 11, 767-790.

[3] Yeh, A.B., Huwang, L. and Wu, C.-W. (2005). A multivariate EWMA control
chart for monitoring process variability with individual observations, IIE Trans-
actions, 37, 1023-1035.
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Progressively Type-II Censored Lifetime
Experiments

Marco Burkschat Institute of Statistics, RWTH Aachen University, Germany

Abstract: In a lifetime experiment, a progressively Type-II censored sample is obtained by
withdrawing a number of surviving units after each failure. Apart from describing acciden-
tal losses of experimental units, progressive Type-II censoring may also be applied for the
purpose of planning a life test in the sense of experimental design. The flexibility gained
by considering different censoring schemes may be exploited in order to improve the out-
come of the experiment with respect to a given optimality criterion. If it has been decided
in advance to carry out a progressively Type-II censored experiment, the question arises
which censoring scheme is optimal for a particular criterion. In the talk optimal censoring
schemes for several time-based criteria are presented. Moreover, some recent results related
to parameter estimation are discussed.
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Estimators and Tests based on Likelihood Depth for
Copulas and the Weibull-Distribution

Liesa Denecke Department of Mathematics, University of Kassel, Germany

Abstract: New estimators based on the Likelihood Depth for the examples of 2-dimensional,
one-parametric Gumbel-Copula (and 2-dimensional Gauss-distribution), and in a second
step for the Weibull-distribution, are presented. The Likelihood-Depth is a concept to gen-
eralize the one-dimensional median to multidimensional data or to data with more than one
parameter. The parameters with maximum depth are the generalized medians. However, in
some cases these generalized medians are biased estimators. This is in particular the case
for the Gumbel-Copula, the Gauss- and for the Weibull-distribution. But the bias can be
corrected leading to new robust estimators in all considered cases. Also tests for the param-
eters were developed. The power-functions of these tests were simulated exemplary for the
cases above. The theory can be used also to find robust estimators for other distributions.

1 Introduction
The copula model has a variety of applications because it models dependence struc-
tures, e.g. in finance, in the analysis of credit risks. Copulas can also be used in
the simulation of technical production processes to model the occurrence of coupled
failures. For an introduction see [9]. Different estimation procedures for copulas were
introduced, parametric, semi-parametric and nonparametric methods are proposed,
see e.g. [1],[2] or [3].

The Weibull-distribution is often used in Survival Analysis, see for example [6].
It can model constant, de- and increasing Hazard-functions. Because of this and
due to the fact, that the survival-function has a rather simple form, it is used in
many applications. The distribution function is one-dimensional and depends on two
parameters. Most times the Maximum-Likelihood-Estimator is used for parametric
estimation, it can be found e.g. in [6].

We derive estimators and tests for one-parametric two-dimensional copulas and for
the Weibull-distribution via likelihood depth and simplicial likelihood depth. These
are rather general notions of data depth, see [7] and [8]. They extend the half space
depth of Tukey ([10]) and the simplicial depth of Liu ([4],[5]) which lead to outlier
robust generalizations of the median for multivariate data. They belong to a broad
class of depth notions introduced and studied in the last 20 years. Although likelihood
depth bases on a parametric approach, it can lead to distribution-free estimators and
tests as [7] demonstrated for location-scale estimation and [8] for regression. [8] also
showed that simplicial likelihood depth is in particular appropriate for testing since it
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is an U-statistic. Thereby rather general hypotheses can be tested and the resulting
tests are outlier robust.

Copulas are often given by distributional assumptions on the form of the copula.
This distributional assumptions for the copula will be used here to define likelihood
depth and simplicial likelihood depth for copulas. The approach is demonstrated
for the Gaussian copula and the Gumbel copula for two dimensions which are based
on one parameter only. In a next step, the Likelihood depth shall be used to find
estimators and tests for the two parameters of the Weibull distribution. We will show
that the two parameters can be estimated and corrected step by step, so the same
methods as in the case of one parameter can be used.

References
[1] Genest, C.; Ghoudi, K.; Rivest, L.-P. (1995). A semiparametric estimation pro-

cedure in multivariate families of distribution, Biometrika 82, 543-552

[2] Hoff, P.D. (2007). Extending the rank likelihood for semiparametric copula esti-
mation, The Annals of Applied Statistics, Vol.1, No. 1, June 2007

[3] Kim, G.; Silvapulle, M.J.; Silvapulle, P. (2007). Comparison of semiparametric
and parametric methods for estimating copulas, Computational Statistics & Data
Analysis 51, 2836-2850

[4] Liu, R.Y. (1988). On a notion of simplicial depth, Proc. Nat. Acad. Sci. USA 85,
1732-1734

[5] Liu, R.Y. (1990). On a notion of data depth based on random simplices, Ann.
Statist. 18, 405-414

[6] Lee, E. T., Wang, J. W. (2003). Statistical Methods for survival data analysis,
Wiley 2003, New Jersey, Third Ed.

[7] Mizera, I.; Müller, Ch.H. (2004). Location-Scale Depth, J.Am.Stat.Assoc. 99,
No. 468, 949-989

[8] Müller, Ch.H. (2005). Depth estimators and tests based on the likelihood prin-
ciple with applicationsto regression, J.Multivariate Anal. 95, No.1, 153-181

[9] Nelsen, R.B. (2006). An Introduction to Copulas, Springer Series in Statistics,
Springer 2006, Second Ed.

[10] Tukey, J.W. (1975). Mathematics and the picturing of data, Proc. International
Congress of MAthematicians 2, Canad.Math.Congress, Montreal
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Multiple Change-Point Estimation with U-Statistics

Maik Doering Institute for Applied Mathematics and Statistics, University of Hohenheim,
Germany

Abstract: We consider a multiple change-point problem: In a sequences of independent
random elements there occurs several changes of distributions at unknown places. Here we
don’t assume that the underlying distributions are known.

We propose a class of estimators of the unknown multiple change-point, that are max-
imizers of weighted multisample U-statistics. The aim of this work is the analysis of the
asymptotic behavior of our estimators.

1 Introduction
We assume that the number of changes q 2 N is known. So let X1,n

, . . . , X
n,n

, n 2 N
be a triangular array of rowwise independent random variables defined on a common
probability space (≠,A, P ) with values in a measurable space (X,F). We assume that
there exists a vector µ = (µ1, . . . , µq

) 2 Rq with

0 = µ0 < µ1 < · · · < µ
q

< µ
q+1 = 1

and distributions ∫
i

for 0 ∑ i ∑ q, such that

P ±X°1
j,n

= ∫
i

for [nµ
i

] < j ∑ [nµ
i+1].

The goal is to estimate the unknown multiple change-point µ. Here nothing is known
about the underlying distributions ∫

i

except that ∫
i°1 6= ∫

i

for 1 ∑ i ∑ q.
U-statistics in change-point analysis has been introduced by Csörgö and Horvath,

see for instance [1]. Our estimator is based on weighted (q + 1)-sample U-statistics
with a chosen kernel h of degree m = (m0, . . . , mq

), where the i-th sample consists of
the random variables X[nti]+1,n

, . . . , X[nti+1],n. Thereby let m
i

2 N0,
m :=

P

q

i=0 m
i

> 0 and the kernel h : Xm ! R be a Fm-B (R)-measurable and
suitable integrable function, which is symmetrical in each of the m

i

coordinates. We
define for n 2 N and t 2 Hm,n

, where

Hm,n

:= {t 2 Rq

: m
i

∑ [nt
i+1]° [nt

i

] for 0 ∑ i ∑ q with t0 = 0, t
q+1 = 1} ,

a (q + 1)-sample U-statistic by

U
n,t (h) :=

q

Y

i=0

µ

[nt
i+1]° [nt

i

]

m
i

∂°1
X

1∑j

0
1<···<j

0
m0
∑[nt1]

. . .
X

[nti]∑j

i
1<···<j

i
mi
∑[nti+1]

. . .
X

[ntq ]+1∑j

q
1<···<j

q
mq∑n

h
≥

X
j

0
1 ,n

, . . . , X
j

0
m0

,n

, . . . , X
j

q
1 ,n

, . . . , X
j

q
mq ,n

¥

.
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We will see that in the context of change-point estimation it is also worthwhile to
work with weight functions w : Rq ! R. They are used to overcome boundary effects,
which typically occur when any of the distances µ

i+1°µ
i

for 0 ∑ i ∑ q is close to zero.
We define a sequence of stochastic processes (Ω

n

)

n2N with Ω
n

= {Ω
n

(t) : t 2 Rq} by

Ω
n

(t) :=

(

w
≥

[nt1]
n

, . . . , [ntq ]
n

¥

U
n,t (h) t 2 Hm,n

0 otherwise.

We define a class of estimators for the change-point µ by

ˆµ
n

:= argmax

µ

|Ω
n

(t)| , t 2
Ωµ

k1

n
, . . . ,

k
q

n

∂

Ø

Ø

Ø

Ø

k
i

2 N0, 1 ∑ i ∑ q

æ∂

.

This construction goes back to the work of Ferger [2, 3]. He considered the case q = 1

and m = (1, 1).
The aim of this talk is to analyze the asymptotic behavior of our estimators.

Dependent on the order of integration of the chosen kernel function of the U-statistic
we obtain consistency of our estimator. Furthermore it turns out that under suitable
conditions [nµ]°nˆµ

n

converge in distribution to a maximizer of a random walk with
drift.

References
[1] Csörgö, M., Horvath, L. (1997). Limit Theorems in Change-Point Analysis, John

Wiley, Chichester.

[2] Ferger, D.(1995). Change-point estimators based on weighted empirical processes
with application to the two sample problem in general measurable spaces, Habili-
tationsschrift, University of Gießen (in German)

[3] Ferger, D. (2001). Exponential and polynomial tailbounds for change-point esti-
mators, J. Statist. Planning Inference 92, 73-109.
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Resampling Approach to the Estimation of
Stochastic System Models

Maxim Fioshin Department of Mathematical Methods of Transport Systems Control, Riga
Technical University, Latvia

Abstract: We review some basic results concerning the resampling method properties and
its applications to the analysis of stochastic systems. This is one of non-parametrical inten-
sive statistical methods. Historically, this method has been studied for reliability problems.
However, it may be applied for a wide range of statistical problems, including regression and
stochastic processes.

1 Introduction
Some statistical methods, called intensive statistical methods, require a big amount
of computations instead of complex inference. This class includes such methods as
Monte Carlo, Randomization, including Cross Validation and Jackknife, Bootstrap.
We consider the Resampling, which is one of the intensive statistical methods.

The Resampling has a number of advantages:

• It does not have limitations to the system structure complexity;

• It does not require a prior information about the distributions of initial data;

• It works efficiently in the case of small initial samples;

• In the case of hierarchical structures it allows parallel computations.

These advantages make the resampling a good alternative to classical methods.

2 The method
Many problems in the estimation of stochastic systems may be reduced to the esti-
mation of the expectation of some known function √(X1, X2, . . . , Xn

) of n random
arguments. In the case of insufficient information about arguments and complex func-
tion structure the resampling approach allows to obtain good estimators for E √. The
method was originally developed by Ivnitsky [1], the present modification proposed
by Andronov [2]. The method has some common properties with bootstrap, see [3].

Suppose X1, X2, . . . , Xn

are independent r.v.s with unknown distributions F
n

(x).
Only the small samples H

i

are available for each X
i

. The problem is to estimate
µ = E √(X1, X2, . . . , Xn

), where √(·) is some known function.

10



To perform an estimation, we extract values from samples H
i

, i = 1, 2, . . . , n,
forming the resamples H

i

, i = n + 1, n + 2, . . .. If the function √(·) has the complex
structure, this procedure may be continued forming new resamples from existing
resamples, until we obtain a realization of a value of the function √.

This procedure is reiterated r times, forming the resampling estimators µ§q, q =

1, 2, . . . , r of µ. The resampling estimator µ§ is an average of all realizations

µ§ = r°1
X

r

q=1
µ§q. (1)

It maybe proved that under some general conditions

µ§
d! µ,

as r !1. For details, we refer to [2].
The measure of the estimator efficiency is given by V ar µ§. It depends on the

moments E µ§ and E [µ§]2, defined by the properties of √(·) and X as well as the
mixed moment E µ§pµ§q, pe¬0

q

, defined by the extraction procedure. Usually E µ§pµ§q

is calculated by conditioning it by different factors, for example, by a number of the
same elements extracted for µ§p and µ§q from the initial samples.

3 Applications
There are different applications of the method [3], for example, estimation in the
case of partially-known distributions, the confidence intervals construction, renewal
processes analysis, regression models analysis, analysis of reliability systems, analysis
of shot-noise processes etc.
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[1] Ivnitsky V. (1967). Approach to Statistical Estimation of System Reliability (in
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Failure Model with Damage Accumulation in a Case of Small Samples. Journal
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11



The Resampling Approach to the Estimation of a
Reliability Model Based on Shot-Noise Processes

Helen Fioshina Department of Mathematical Methods of Transport Systems Control, Riga
Technical University, Latvia

Abstract: A failure model based on shot-noise processes is considered. Two sample popula-
tions are available: a sample of intervals between shocks and a sample of magnitude values.
The purpose is to estimate the expectation of the system stress level at time t. We consider
the plug-in and resampling estimators of the above mentioned characteristics.

1 Introduction
We consider a reliability system, subjected to shocks [1]. The shocks occur in accor-
dance to a homogeneous Poisson process with rate ∏. The i.i.d. r.v. X

i

, independent
on this process, represent shocks magnitude. The magnitudes of shocks are additive
and decrease over time at a deterministic function h(t) = exp(°Æt).

We are interested in the total shock value or stress level at time t

X(t) =

N(t)
X

i=1

X
i

exp(°Æ(t° S
i

)). (1)

Let E[X(t)] be an expectation of X(t). It is known [2] that it is

E[X(t)] = ∏E[X](1° exp(°Æt))/Æ. (2)

The rate ∏ and the cdf F (x) are unknown, but the sample A of the intervals
between shocks and the sample B of shock values are given. We need to estimate
E[X(t)].

2 The method
We consider two estimation methods: the plug-in and the resampling estimators [3].
The plug-in approach uses the estimates ˆ∏ and ˆE[X] obtained from samples A and
B. Using them instead of true values in (2), one obtains the estimator

ˆµ
Xt

=

ˆ∏ ˆE[X]

(1° exp(°Æt))

Æ
. (3)

In the resampling approach the initial variables are randomly extracted from the
samples A and B. In the q-th realization we extract elements from A and B without

12



replacement and calculate the shock appearance times {S§q
i

} and shock magnitudes
{B§q

i

}. Then we construct trajectory of the process and calculate the stress level

X§q
(t) =

X

i:Si∑t

B§q
i

exp(°Æ(t° S§q
i

)). (4)

The procedure is reiterated r times. The average of X§q
(t) is the resampling estimator

of µ
Xt

. Our purpose is to obtain the expressions for properies of the plug-in and
resampling estimators, such as the expectation, variance and mean squared error.

3 Example
Let us consider a Poisson process of shocks with rate ∏=0.66, exponential distribution
of shock magnitudes with parameter ∏

B

= 1 and the rate Æ = 0.1. The sizes of the
samples A and B are supposed to be equal: n = n

A

= n
B

. The number of resamples
r = 3000. The comparison of the plug-in and resampling estimators was performed,
see Fig. 1

Figure 1: Variance of the plug-in and resampling estimators of µ4.

We can see that in this case the resampling estimator has smaller variance, es-
petially in the case of small sample sizes.
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[2] Ross Sheldon M. (1996). Stochastic processes. John Wiley & Sons, New York.

[3] Andronov A., Fioshina H. and Fioshin M. (2009). Statistical Estimation for a
Failure Model with Damage Accumulation in a Case of Small Samples. Journal
of Statistical Planning and Inference, in press, doi:10.1016/j.jspi.2008.05.026.
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A Prediction Problem in Interval-Censored
Nonhomogeneous Poisson Processes

Jürgen Franz TU Dresden, Germany

Let us consider a failure-repair model where minimal repair actions and neglected
repair times are assumed. The model is described by counting processes, especially
by nonhomogeneous Poisson processes. Moreover it is assumed that failures can only
be observed in an interval [æ, ø ]. As an additional information the number of failure
events before æ is known.

1 Description of the model
Let (T

i

)

i∏1 be the sequence of failure time points on a probability space [≠, F, P].
Then, {N(t), t ∏ 0} is the corresponding counting process with

N(t) =

1
X

i=1

1{T
i

∑ t}

and is assumed to be a nonhomogeneous Poisson process (NHPP) with intensity
function ∏(t, µ), cumulative intensity §(t, µ) =

R

t

0 ∏(u, µ)du < 1 and

P (N(t)°N(s) = k) =

[§(t)° §(s)]k

k!

exp{°[§(t)° §(s)]}

(k=0,1,2,...)
Example: Weibull process: ∏(t, µ) = Æ · ØtØ°1

(t ∏ 0, µ = (Æ, Ø) 2 R2
+)

For statistical investigations we need the likelihood function. For the considered
NHPP we propose that the intensity structure has the factorization ∏(t, µ) = Æ ·
µ(t,Ø)) (t ∏ 0; Æ > 0, Ø > 0). Then

L(µ) =

M(æ,Ø)

m

m!

Æn

n

Y

i=m+1

µ(t
i

, Ø) exp[°ÆM(ø, Ø)]

where t
i

are the observed failure time points, N(æ) = m, N(ø) = n and M(t,Ø) =

R

t

0 µ(u, Ø)du.

(Weibull-process case: L(µ) =

Æ

m
æ

mØ

m! (ÆØ)

n°m

Q

n

i=m+1 tØ°1
i

exp[°ÆøØ

].)

14



2 Parameter estimation
Based on the likelihood function the ML-parameter estimators are obtained, for instance in
the Weibull-process case:

bÆ
ML

(ø) =

N(ø)

ø b
ØML(ø)

, bØ
ML

(ø) =

N(ø)°m

N(ø) ln ø °m lnæ °
P

N(ø)
i=m+1 lnT

i

Using the quadratic loss function V (µ, bµ(ø)) = (µ°bµ(ø))

2 and the (semi-conjugate) prior
density

q(µ) =

ab

°(b)
Æb°1e°aÆ · p(Ø),

the posterior density (Weibull-process case)

eq
ø

(µ) =

(a + øØ

)

b+n

°(b + n)

Æb+n°1e°(a+ø

Ø)Æ · ep
ø

(Ø)

with ep
ø

(Ø) =

w(Ø)R
w(Ø)dØ

and w(Ø) =

p(Ø)æmØ
Ø

n°m Qn
i=m+1 t

Ø°1
i

(a+ø

Ø)b+n ,

and the Bayes point estimators bµ(ø) =

R

£ µeq
ø

(µ)dµ follows, especially:

bÆ
B

(ø) =

Z 1

0

N(ø) + b

(a + ø b
ØB(ø)

)

ep
ø

(Ø)dØ bØ
B

(ø) =

Z 1

0
Øep

ø

(Ø)dØ

3 Bayes prediction
The process is observed up to the time ø with the state N(ø) = n. Now we are interested
in approximate values of future time points T

n+k

(k=1,2,...).
For any k the Bayes prediction density of T

n+k

is:

g
Tn+k(t) =

°(n + b + k)

°(n + b)°(k)

Z 1

0
µ(t,Ø)ep

ø

(Ø)Q(t, s, Ø)dØ

Q(t, s,Ø) =

[M(t,Ø)°M(s,Ø)]

k°1
[M(ø, Ø) + a]

n+b

[M(t,Ø)°M(s,Ø) + M(ø, Ø) + a]

n+b+k

As Bayes point estimator for T
n+k

could used

[T
n+k

=

Z 1

Tn

tg
Tn+k(t)dt.

Bayes prediction intervals I
B

for T
n+k

given the cover probability 1° " are obtained by
Z

t§

s

g
Tn+k(t)(t)dt = "1,

Z

t

§

s

g
Tn+k(t)(t)dt = 1° "2, "1 + "2 = "

and I
B

= [t§, t§].
Numerical results are given.
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Risk-Adjusted Monitoring of Time to Event

Axel Gandy Department of Mathematics, Imperial College London, U.K.

Abstract: Statistical process control has been a common tool in industry for some time.
Recently there has been interest in risk-adjusted cumulative sum charts (CUSUM) to mon-
itor the performance of e.g. hospitals, taking into account the heterogeneity of the patients.
Even though many outcomes involve time, only conventional regression models are being
commonly used. In this talk we investigate how time to event/survival analysis models can
be used for monitoring purposes and in what situations the new methods lead to shorter
alarm times. We consider monitoring using CUSUMs based on the partial likelihood ratio
between an out-of-control state and an in-control state. We consider both proportional and
non-proportional alternatives, as well as a head start. Against proportional alternatives, we
present an analytic method of computing average run lengths. We present two examples,
one from the retail financial industry and one medical application.
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Nonstationary-Volatility Robust Panel Unit Root
Tests and the Great Moderation

Christoph Hanck Department of Quantitative Economics, Universiteit Maastricht, NL

Abstract: This paper proposes a new testing approach for panel unit roots that is, unlike
previously suggested tests, robust to nonstationarity in the volatility process of the inno-
vations of the time series in the panel. Nonstationarity volatility arises for instance when
there are structural breaks in the innovation variances. A prominent example is the reduc-
tion in GDP growth variances enjoyed by many industrialized countries, known as the ‘Great
Moderation.’ The panel test is based on the classical multiple test of [1], which combines
evidence from time series unit root tests of the series in the panel. As time series unit root
tests, we employ recently proposed tests of [2]. The panel test is robust to general patterns
of cross-sectional dependence and yet straightforward to implement, only requiring valid
p-values of time series unit root tests, and no resampling. Monte Carlo experiments show
that other panel unit root tests suffer from sometimes severe size distortions in the presence
of nonstationary volatility, and that this defect can be remedied using the test proposed
here. The new test is applied to test for a unit root in an OECD panel of gross domestic
products, yielding inference robust to the ‘Great Moderation.’ We find little evidence of
trend stationarity.
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[1] Simes, R.J. (1986). An improved Bonferroni procedure for multiple tests of sig-

nificance, Biometrika 73(3):751–754.

[2] Cavaliere, G. and Taylor, A. M. R. (2008). Time-transformed unit root tests for
models with non-stationary volatility, Journal of Time Series Analysis 29(2):300–
330.

17



Identifying Sources of Business Cycle Fluctuations in
Germany 1975-1998

Oliver Holtemöller Faculty of Business and Economics, RWTH Aachen University, Germany
Torsten Schmidt RWI Essen, Germany

Abstract: In this paper, we estimate a small New Keynesian dynamic stochastic general
equilibrium (DSGE) model for Germany for the period from 1975 to 1998 and use it to
identify the structural shocks, which have driven the business cycle. For this purpose we
apply indirect inference methods, that is we specify the parameters of the theoretical model
such that simulated data mimics observed data as closely as possible. In addition to the
identification of structural shocks, we uncover the unobservable output gap, which is a
prominent indicator in business cycle analysis. Furthermore, we show to which extent each
identified shock has contributed to the business cycle fluctuations.
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Two-Sample Survival Tests with Estimated Scores

Arnold Janssen Heinrich-Heine Universität Düsseldorf, Germany

Abstract: In this talk we consider two-sample testing problems for randomly censored
survival data. There exist efficient two-sample tests for all kind of semiparametric hazard
models for a given direction of hazard alternatives. The tests are weighted log-rank tests,
see Fleming and Harrington. For instance they can be used to separate proportional hazards
or early (late, central) hazard differences but the statistician should know the shape of the
alternative. In this work an adaptive testing procedure is proposed with good power for
whole cones of alternatives. The advantage of the tests is explored by two examples given
by real data.
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On Change-Point Models in Survival Analysis with
Applications in Reliability

Uwe Jensen Department of Applied Mathematics and Statistics, University of Hohenheim,
Stuttgart, Germany

Abstract: A Cox-type regression model is considered which admits change-points in the
covariates. A change-point specifies the unknown threshold at which the influence of a
covariate shifts smoothly, i.e. the regression parameter may change over the range of a
covariate and the underlying regression function is continuous but not differentiable. The
model can be used to describe change-points in different covariates but also to model more
than one change-point in a single covariate. Estimates of the change-points and of the
regression parameters are derived and their properties are investigated. It is shown that not
only the estimates of the regression parameters are

p
n-consistent but also the estimates of

the change-points in contrast to the conjecture of other authors. Asymptotic normality is
shown by using results developed for M-estimators. Finally the model is applied to data
sets which stem from engineering experiments.

1 Introduction
Consider a multivariate counting process N(t) = (N1(t), . . . , Nn

(t)), where N
i

(t)
counts observed events in the life of the ith individual, i = 1, . . . , n, over the time
interval [0, ø ]. The sample paths of N(t) are step functions, zero at time zero with
jumps of size one only and no two components jump at the same time. The count-
ing process N(t) admits an intensity ∏(t) = (∏1(t), . . . , ∏n

(t)) such that the processes
M

i

(t) = N
i

(t)°
R

t

0 ∏
i

(u)du, i = 1, . . . , n, and t 2 [0, ø ] are martingales. Different mod-
els are determined by their intensities. The intensity of the basic Cox model with
baseline hazard ∏0(t) and covariate vector Z(t) is given by ∏(t) = ∏0(t) exp{ØT

0 Z(t)}.
In this model it is assumed that the influence of a covariate is constant in time and
over the range of the covariate. By analyzing different datasets we found out that
some covariates exhibit deviations from this assumption. Therefore, we proposed a
new variant of the Cox model with a smooth change at an unknown threshold ª (see
[1]).

In the literature several extensions of the Cox model have been investigated.
Among these extensions is a model introduced by Pons [2]

∏(t) = ∏0(t) exp{ÆT Z1(t) + ØT Z2(t)I{Z3∑≥} + ∞T Z2(t)I{Z3>≥}},

where the influence of a covariate jumps at a certain threshold ≥. The estimate of
the jump change-point parameter was shown to be n-consistent in this case.
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2 The model
In our model we allow for more than only one smooth change-point, the covariates
may be time-dependent and the counting process may jump more than once. The
model involving m change-points and p ordinary covariates (without change-points)
is given as follows:

∏
i

(t, µ) = ∏0(t)Ri

(t) exp

©

Ø1
TZ1i

(t) + ØT

2 Z2i

(t) + ØT

3 (Z2i

(t)° ª)

+
™

,

where µ = (ªT ,ØT

)

T with ª 2 • Ω Rm and Ø = (ØT

1 ,ØT

2 , ØT

3 )

T 2 B Ω Rp+2m. Here ª
and Ø are the vectors of change-points and regression parameters respectively, ∏0(t)
is the baseline intensity and R

i

(t) is a process taking only values 1 or 0 to indicate
whether a subject is at risk or not.

The parameter vector µ0 is estimated by the value µ̂
n

that maximizes the logarithm
of the partial likelihood. In particular, we show that the estimates of the change-points
are only

p
n-consistent and not n-consistent as one might have guessed. As usual, the

cumulative hazard function §0(t) =

R

t

0 ∏0(u)du is estimated by the Breslow estimator
ˆ

§

n

(t).
Besides consistency we can show asymptotic normality of the estimators by means

of results developed for M-estimators (see [3]).

3 Applications
We applied our model to some datasets. Among these are an actuarial dataset and
the well known PBC dataset. It can be shown by means of a goodness-of-fit test
that we get a better fit of the data using our change-point model instead of using the
classical models. In addition we analysed datasets consisting of survival times and
covariates recorded for electric motors and transmissions.
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Bayes Sequential Estimation for a Time-Transformed
Exponential Model

Alicja Jokiel-Rokita Institute of Mathematics and Computer Science, Wroclaw University
of Technology, Poland

Abstract: A problem of Bayesian sequential estimating an unknown parameter of a time
transformed exponential model is considered. It is assumed that the loss associated with the
error of estimation is a weighted squared or precautionary loss, and the cost of observing
the process is a linear function of time and the number of observations. Bayes sequential
procedures for estimating the unknown parameter are presented.

1 Introduction
The paper deals with the problem of sequentially estimating the parameter # of the
distribution defined by the density

f(x; #) = s0(x)# exp[°#s(x)]1(µ,1)(x), (1)

where s(x) is a strictly increasing and differentiable function with lim

x!1 s(x) = 1
and s(µ) = 0. The parameter # is unknown and µ is known. This subclass of
exponential family is called the time-transformed exponential model (see [2]). It
covers many distributions serving as lifetime distributions in reliability models. It is
easy to show that the family of gamma distributions G(Æ, Ø) with density

°(Æ)

°1ØÆ#Æ°1
exp(°Ø#)1(0,1)(#),

where Æ, Ø > 0 are known parameters, is the conjugate one to the family of distribu-
tions given by (1).

We want to estimate the parameter # on the basis of at most n independent
observations X1, . . . , Xn

from the distribution given by (1). If the observation process
is stopped at time t, the values of X1, . . . , Xn

not exceeding t are exactly known,
whereas the other X

i

are only known to be larger than t. The observations available
in this way are sometimes called in literature as longitudinal observational data (see
[1]).

Denote F
t

= æ{(X1^t,1(0,t](X1)), . . . , (Xn

^t,1(0,t](Xn

))}, for t ∏ 0. If observation
is stopped at time t, the loss incurred is defined by

L
t

(#, d(t)) = L(#, d(t)) + c
A

K(t) + c(t),
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where L(#, d(t)) denotes the loss associated with the error of estimation, when # is the
true value of the parameter and d(t) is the chosen F

t

-measurable estimate; K(t) :=

P

n

i=1 1(0,t](Xi

), c
A

is a known nonnegative constant, c(t) is a known nondecreasing
function with c(0) = 0. We assume the following loss function

L(#, d(t)) =

(#° d(t))2

dk

(t)#r

, (2)

where k 2 {0, 1, 2}, r 2 {0, 1, 2}. For k = 0 we have the usual weighted squared loss
function. For k 6= 0 we obtain the precautionary loss function introduced in [4]. The
condition k ∑ 2 ensures that the cost increases as the difference #° d(t) grows. This
loss function approaches infinity near the origin to prevent underestimation and thus
gives a conservative estimator, especially when low failure rates are being estimated.
This estimator is useful when underestimation may lead to serious consequences. A
precautionary index k indicates how downside damaging the loss function is.

The special models with s(x) = x and the estimation loss function #°r

(#° d(t))2

for some r ∏ 0 have been treated in the papers [3] and [5].
In the paper a class of Bayes sequential procedures for estimating the unknown

parameter # is derived, under the loss given by (2) with k 2 {0, 1, 2} and r 2 {0, 1, 2}.
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Optimal General Maintenance for Discrete Lifetime
Distributions

Waltraud Kahle Institute of Mathematical Statistics, Otto-von-Guericke-University
Magdeburg, Germany

Abstract: In many applications the clock time is not the best scale in which to describe
lifetimes. As example, if a unit has a sequence of tasks to perform, then its lifetime is
measured by the number of tasks performed before its failure. We consider discrete lifetime
distributions. When the item fails, it is minimally repaired. Additionally, from time to time
maintenance actions are carried out. We assume, that these maintenance actions do not
renew the item, but reset the age of the item to some level between zero and the real age.
An optimal maintenance policy will be found for some special cases.

1 The model
We consider an discrete lifetime distribution. As an example, let T be Poisson dis-
tributed:

P(T = t) =

∏t

t!
e°∏ , t = 0, 1, . . . . (1)

The failure rate for discrete distributions (and especially for the Poisson distribution)
is given by

h(t) =

P(T = t)

P(T ∏ t)
=

∏t/t!
P1

k=t

∏k/k!

, t = 0, 1, . . . .

It can be shown, that the failure rate of the Poisson distribution is increasing.

2 Optimal maintenance interval
Now, we assume that at failure the item is repaired minimally, that is, after repair the
age of the item is the same as just before failure. The cost of a failure is c

F

. Further,
we have preventive maintenance actions at time point ø , 2ø , . . . . Let be c

M

the costs
of an maintenance action. We do not make the assumption that after maintenance
the item is as good as new. Every maintenance action leads to an age v, v = 1, . . . , ø .
Then the costs per time unit are given by

C(ø) =

c
F

P

ø°1+v

k=v

h(k) + c
M

ø
, c

F

> c
M

, (2)

where v is the age of the item after maintenance. It can be proved that C(ø) has an
unique minimum.
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Figure 1: Cost functions for different impact of repairs

In figure 1 are shown the costs for ∏ = 20, different impact of repairs v = 0, 1, 2, 4
and c

F

/c
M

= 5. It can be seen that with increasing v the optimal time between
preventive maintenances decreases and the costs are increasing.

3 Optimal degree of repair
Now, let us consider an other problem. We assume now that the time interval ø
between preventive maintenance actions is fixed. Our aim is to find the optimal
degree of repair, that is, the optimal age after pm. For this, we must describe the
costs of an pm in dependence on the degree of repair. Instead of c

M

in (2) we assume
the costs of a pm to be

c
M

·
µ

ø ° v

ø

∂

Æ

.

For v = 0 we get the full costs c
M

and for v = ø the costs are 0. For Æ = 1 the costs
are linear in v, otherwise we have an convex (Æ > 1) or a concave (Æ < 1) function.
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Figure 2: Cost functions for different alpha

In figure 2 are shown the costs for ∏ = 20, ø = 10, c
F

/c
M

= 5, and different Æ.
For very small Æ we get that the optimal maintenance is an renewal and the optimal
optimal age after pm increases with Æ.
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Two-Dimensional Diffusion Processes as Models in
Lifetime Studies

Mario Lefebvre Department of Mathematics and Industrial Engineering, École Polytechnique
de Montréal, Canada

Abstract: Let X(t) denote the remaining useful lifetime of a machine, and let Y (t) be a
standard Brownian motion. Assume that the derivative Ω[X(t), Y (t)] of X(t) is a deter-
ministic function of (at least) Y (t). We consider the two-dimensional degenerate diffusion
process (X(t), Y (t)). We obtain explicit expressions for the expected value of the random
variable T (x, y) denoting the first time the machine must be replaced or repaired for various
functions Ω[X(t), Y (t)].

1 Introduction
Assume that a given product possesses a certain quality characteristic, whose value
at time t is denoted by D(t), that is closely correlated with its lifetime L, so that L
can be defined as follows:

L = inf{t > 0 : D(t) ∑ c},

where c is the critical level for D(t).
Tseng and Peng [3] assumed that D(t) is a decreasing function of t, and that

the continuous time (one-dimensional) stochastic process {D(t), t ∏ 0} satisfies the
following equation:

D(t) = M(t) +

Z

t

0

s(u) dB(u), (1)

in which M(t) is the mean value of D(t), {B(t), t ∏ 0} is a standard Brownian motion,
and s(u) could be a constant. However, a stochastic process that satisfies (1) can be
both increasing and decreasing on any interval.

In a related problem, Rishel [2] proposed to model the wear X(t) of a machine at
time t by the system of two stochastic differential equations

dX(t) = Ω[X(t), Y (t)] dt, (2)
dY (t) = f [X(t), Y (t)] dt + æ[X(t), Y (t)] dB(t), (3)

where Ω, f and æ are differentiable functions, and Ω and æ are non-negative in the
domain of interest. In this model, Y (t) is a variable that directly influences the wear,
for instance the temperature or the operating speed of the machine.
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In [1], the author computed the expected value of

ø(x, y) := inf{t > 0 : X(t) = 0 | X(0) = x, Y (0) = y}

when Ω[X(t), Y (t)] = Xj

(t) Y k

(t), with j 2 {0,°2,°4, . . .} and k 6= 0, and the
process {Y (t), t ∏ 0} is a geometric Brownian motion.

Let
m(x, y) := E [T (x, y)] ,

where T (x, y) denotes the first time that the machine must be replaced or repaired.
In the current paper, we will consider the case when {Y (t), t ∏ 0} is a standard
Brownian motion and we will solve the Kolmogorov backward equation satisfied by
the function m(x, y), namely

1

2

m
yy

(x, y) + Ω(x, y) m
x

(x, y) = °1

(subject to the appropriate boundary conditions) for various functions Ω(x, y).
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On Estimation of Parameters of Nonhomogeneous
Poisson Process Models for Software Reliability

Alicja Jokiel-Rokita Institute of Mathematics and Computer Science, Wroclaw University
of Technology, Poland
Ryszard Magiera Institute of Mathematics and Computer Science, Wroclaw University of
Technology, Poland

Abstract: We consider a subclass of nonhomogeneous Poisson processes (NHPP’s) which
besides of its theoretically interesting structure it can be used to model software reliability.
In contrast to the maximum likelihood (ML) method, we propose two alternative methods
which yield satisfactory estimates of unknown parameters of the process models and can be
applied when the ML method fails.

1 Introduction
A NHPP is considered with the intensity function ∏(t) and the mean value function
§(t) =

R

t

0 ∏(u)du having the following parametric form

§(t; Æ,Ø) = ÆF (t/Ø). (1)

The parameter Æ is called the expected number of faults to be eventually detected
(see [3]), Ø is a scale parameter, and F (t) is a known increasing function of t. It is
assumed that F (0) = 0 and F (1) = 1.

The model defined by (1) has bounded mean value function. Because a software
system contains only a finite number of faults, this model is preferable in comparison
with NHPP software reliability models with unbounded mean value function.

As a special case of the model (1) we consider the NHPP model defined by

§(t; Æ, Ø) = Æ

"

1° exp(°t/Ø)

k

X

i=0

(t/Ø)

i

i!

#

, Æ, Ø > 0, (2)

or equivalently, by

∏(t; Æ,Ø) =

Æ(t/Ø)

k

Øk!

exp(°t/Ø).

The model (2) was first mentioned in the paper [1] and is called the k-stage Erlangian
NHPP software reliability model.
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2 The LS and CLS methods as alternatives to the
ML method

The ML estimators of the parameters Æ and Ø of the model (1) do not always exist.
In particular, it follows from Theorem 2.1 of [4] that for the model (2) the ML
estimators do not exist with the probability P

≥

1
N(T )

P

N(T )
i=1 t

i

∏ k+1
k+2T

¥

, where N(T )

is the number of arrives up to time T and t1, . . . , tN(T ) are the observed arrival times.
We propose the following two alternative methods for evaluating estimators of

the unknown parameters Æ and Ø: 1) the least squares (LS) method consisting in
determining the values of Æ and Ø that minimize the quantity

N(T )
X

i=1

[§(t
i

; Æ, Ø)° §(t
i°1; Æ, Ø)° 1]

2
; (3)

2) the constrained least squares (CLS) method consisting in determining the
values of Æ and Ø that minimize the quantity (3) subject to the constraint

1
N(T )

P

N(T )
i=1 [§(t

i

; Æ, Ø)° §(t
i°1; Æ, Ø)] = 1.

The LS and/or the CLS method can be used when the ML method fails. The
LS and CLS estimates are compared with the ML estimates and their accuracy is
illustrated numerically for an Erlangian NHPP software reliability model.

Based on the papers [2] and [4] we discuss the problem of inconsistency of estima-
tors of some parameter functions in the NHPP models considered.
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Stochastic Modelling for Speech Recognition and
Language Translation

Hermann Ney Computer Science Department, RWTH Aachen University, Aachen

The last two decades have seen a dramatic progress in the area of automatic pro-
cessing of speech and language. This talk gives an overview of the stochastic approach
to both automatic speech recognition and language translation. It is remarkable that,
in both tasks, the stochastic approach makes use of the same four principles:

• Bayes decision rule for minimum error rate,

• probabilistic models ((like Hidden Markov models) for handling strings of ob-
servations (like acoustic vectors for speech recognition and written words for
language translation),

• training criteria and algorithms for estimating the free model parameters from
large amounts of data,

• the generation or search process that generates the recognition or translation
result.

The work on speech recognition and language translation we report has been and
is being performed in various large-scale projects:

• TC-Star (supported by EU): recognition of speeches given in the European
parliament, translation of Spanish and English in both directions;

• GALE (funded by US DARPA): recognition of broadcast news and conversa-
tions in Arabic and Chinese, translation of both speech and text from Arabic
and Chinese into English;

• QUAERO (funded by French government): recognition and translation of
French, German and other European languages for broadcast news, parliamen-
tary speeches, audio archives, podcasts etc.

Speech Recognition

The progress in automatic speech recognition is based on improvements along various
dimensions:

• improved acoustic features;
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• speaker adaptive methods like MLLR (maximum likelihood linear regression)
and VTLN (vocal tract length normalization) and SAT (speaker adaptive train-
ing);

• discriminative training, which unlike conventional maximum likelihood better
focuses on recognition errors;

• use of more training data (order of 1000 hours) and also unsupervised training,
which is able to make use of speech data without manual transcription;

• improved search algorithms;

• system combination.

Language Translation

Unlike speech recognition, the stochastic approach to language translation does not
have a long history yet. It began in 1988 when IBM research started its pioneering
work on statistical translation. At that time, the use of statistics for translation was
very controversial. Now twenty years later, the best systems for language translations
are based on the stochastic approach. Today, a typical state-of-the-art statistical
system for language translation has the following four components:

• Training: For each sentence pair of the training data, an alignment matrix
is computed, typically by using the set of so-called IBM-1 to IBM-5 alignment
models and a Hidden Markov model.

• Phrase extraction: From the alignment matrices of all training sentence pairs,
source-target fragments are excised and used to define the so-called phrase ta-
bles.

• Log-linear model combination: For each source-target phrase pair in the
phrase table, so-called scoring functions are defined. Based on the training data,
these scoring functions compute a probabilistic score of the hypothesis that the
source fragment and the target fragment under consideration are translations
of each other. These scoring functions are complemented with a word and/or
phrase re-ordering model. All these scoring functions are combined in a so-
called log-linear model. The weight of each scoring function is tuned for optimal
translation quality or a related criterion.

• Generation or search: For the given source sentence, the goal is to select the
target sentence with the highest probabilistic score in the log-linear model. To
this purpose, the search algorithm has to generate and score hypotheses over
various unknowns: unknown segmentation of the source sentence, unknown
target phrases and unknown order of these phrases in the target sentence.
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Modeling and Forecasting Realized Volatility via
State-Space Representation

Vasyl Golosnoy Institute of Statistics and Econometrics, Kiel University, Germany
Iryna Okhrin Department of Statistics, European University Viadrina, Frankfurt (Oder),
Germany
Wolfgang Schmid Department of Statistics, European University Viadrina, Frankfurt (Oder),
Germany

Abstract: Availability of ultra high frequency data allows to construct precise estimators
for daily realized volatility. Econometric modeling and forecasting of realized volatilities of
asset returns is of interest for an investor. This paper models the realized volatility process
using a state-space representation. The validity of the state-space model is checked at every
new point in time in a sequential way. Our methodology is applied to empirical data.

1 Modeling realized volatilities
This paper aims to check the validity of time series models for the realized volatility.
Since the process of volatility is unknown in practice, our model relies on the state-
space representation. It could also be represented as a type of measurement error
equations.

It is assumed the log-price of a stock follows an Itô process. Then the log-returns
for the day t are normally distributed, R

t

|µ
t

,æ2
t

ª N (µ
t

,æ2
t

), t = 1, 2, . . . . The
variance æ2

t

is called actual volatility and is given by æ2
t

=

R

t¢

(t°1)¢ æ2
(u)du, t 2 N.

The process æ2
t

is unobservable and can be estimated by a sum of squared intraday

log-returns, s2
t

=

m

P

i=1
R2

t,i

. It is called realized volatility ([2], [1]).

The volatility dynamics is assessed via the state-space model. In particular, we
assume that (unobservable) log-actual volatility follows an AR(1) process. Then the
state equation is given by

log(æ2
t+1)° log(æ2

) = ¡(log(æ2
t

)° log(æ2
)) + v

t+1.

Since the paper [1] shows that log-realized volatility is asymptotically normally dis-
tributed, we write the observation equation as

log(s2
t

) = log(æ2
t

) + w
t

.

The model of these two equations can be estimated by Kalman filter. In the classical
setup the residuals v

t

and w
t

assumed to be normally distributed and not correlated.
Since the residuals are not homoscedastic in our case we adopt the estimation proce-
dure for the time varying residual variances.
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2 Control charts and empirical application
We suggest to check the model validity in a sequential way by monitoring the residual
process. For this purpose we normalize the difference between the observed value s2

t

and its forecast based on information set I
t°1 available at t° 1:

¥
t

=

s2
t

° ŝ2
t|t°1

var(s2
t

° ŝ2
t|t°1)

1/2
, t ∏ T. (1)

These residuals form the process of interest {¥
t

}. If the model is correct, the residuals
should be normally distributed with mean zero and variance one and not autocorre-
lated. The classical Shewhart chart gives a signal if |¥

t

| > c, where the control limit
is defined as a quantile of the standard normal distribution c = z1°p/2, p = (ARL0)

°1

([5]).
The four stocks from NYSE are selected for the empirical analysis: General Mo-

tors, Hewlett-Packard, Coca-Cola, and United Technologies. The ultra high frequency
data is available for the period from April 15, 2005 to October 27, 2005. The estima-
tion of realized volatility should be done taking into account the market microstruc-
ture noise. We follow the common proposition to take two scale estimator based on
the 5 minutes frequent data ([4],[3]).

In all four cases the normality assumption for the model residuals is not rejected.
Moreover, the estimated residuals show no autocorrelation. The Shewhart control
charts provide signals during the observed period, which indicate on the model insta-
bility and should be investigated for their causes.
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Semiparametric Inference with Applications to
Image Symmetry and Nonlinear Time Series

Mirosław Pawlak, Electrical and Computer Engineering, University of Manitoba, Canada

Abstract: In this paper, we examine the problem of the semiparametric statistical inference
in the context of the regression analysis. Here one wishes to estimate a finite-dimensional
parameter in the presence of a nonparametric class of functions that define an infinitely
dimensional nuisance parameter. We identify two distinct cases, in the first one we can
obtain an estimate of the parameter without using a nonparametric smoothing technique.
On the other hand, in the second case the parameter estimator requires a pilot nonparametric
smoothing algorithm. In both cases we are interested in establishing conditions for thep

n°consistency of the proposed parametric estimators. The first scenario of the developed
theory is illustrated by the problem of estimating the axis of reflectional symmetry of a
nonparametric image function. The second semiparametric situation is explained in the
context of random dynamical systems being a low-dimensional approximation of general
nonlinear time series models.
Keywords: semiparametric inference,

p
n°consistency, nonparametric estimation, image

analysis, image symmetry, nonlinear time series.

1 Summary
There are two traditional ways concerning the statistical inference for estimating regres-
sion function, i.e., parametric and nonparametric approaches. In the former approach, one
specifies the regression function up to the unknown finite-dimensional parameter. On the
contrary, in the latter case no specific form of the regression function is assumed. There are
numerous parameter estimation techniques that enjoy the optimal

p
n°consistency, provided

that parametric regression model is correctly specified. In the nonparametric setting there
is no risk of model misspecification. Nevertheless, corresponding nonparametric estimators
exhibit low convergence rates which additionally deteriorates with increasing dimensionality
of input variables.
In practice, we can often accept a semiparametric (intermediate) model which lies between
parametric and fully nonparametric cases. The model is characterized by a finite-dimensional
parameter embedded in unknown infinite-dimensional parameters that run typically through
a nonparametric class of low-dimensional functions. Hence, the semiparametric model is de-
fined by the pair (µ, g(•)), where µ a finite-dimensional parameter and g(•) is from a class of
nonparametric functions. The goal is to estimate µ treating g(•) as an infinite-dimensional
nuisance parameter. The regression analysis is defined by the vector (X,Y ) distributed
according to the probability law P (•, •). In the parametric case P (•, •) is known up to the
unknown finite-dimensional parameter µ, i.e., P (•, •) = P

µ

(•, •). On the contrary, in the
fully nonparametric situation P (•, •) is completely unknown. In the semiparametric setting
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we have a natural parametrization P
µ,g(•)(•, •). The process of recovering µ from the training

set {(X1, Y1), . . . , (Xn

, Y
n

)} is usually based on the formation of the contrast function

Q
n

(µ, g(•)) = n°1
n

X

i=1

™

µ,g(•)(Xi

, Y
i

), (1)

where ™

µ,g(•)(•, •) is the known score function parametrized by (µ, g(•)). The basic idea of
the semiparametric inference (in finding an estimate ˆµ of µ) is to eliminate the dependence of
Q

n

(µ, g(•)) on the nonparametric function g(•). Hence, we wish to analyze the parametric
part of the semiparametric model as if the nonparametric part were given. This usually
is done by forming a pilot nonparametric estimate of g(•) for a given µ. This leads to a
nonparametric estimate ĝ(•; µ) that itself depends on µ. As a result, we can replace g(•) in
(1) by ĝ(•; µ) and consequently obtain the following criterion depending solely on µ

ˆQ
n

(µ) = n°1
n

X

i=1

™

µ,ĝ(•;µ)(Xi

, Y
i

). (2)

It is now natural to define an estimate ˆµ of the true µ as the minimizer of ˆQ
n

(µ). In this
paper we examine sufficient conditions yielding the

p
n°consistency of ˆµ. The dependence

of ĝ(•; µ) on µ plays an important role in the accuracy of the estimate. Nevertheless, we
also identify cases where the dependence of µ on g(•) is weak and no pilot nonparametric
estimate of g(•) is required. In particular, this phenomenon is explained by an important
problem of estimating the axis of mirror symmetry of a reflection symmetric image g(x1, x2)

observed on the square grid points {(x1,i

, x2,j

), 1 ∑ i, j ∑
p

n}. Hence, we observe

Y
i,j

= g(x1,i

, x2,j

) + Z
i,j

, (3)

where Z
i,j

is a noise process, and we wish to estimate the angle µ of the axis of mirror
symmetry. Thus, the image function g(x1, x2) is completely unknown but it is assumed to
be symmetric, i.e., it satisfies

g(x1, x2) = g(x1(µ), x2(µ)),

where x1(µ) = x1 cos(2µ) + x2 sin(2µ), x2(µ) = x1 sin(2µ) ° x2 cos(2µ) defines the mirror
symmetry transformation with respect to the axis symmetry line with the unknown angle
µ. In this paper we propose an estimation procedure ˆµ for estimating µ and we show that
for any image functions g(x1, x2) of bounded variation the estimate ˆµ converges at the
optimal parametric rate of

p
n. The estimation procedure is based on minimizing over

µ the L2 distance calculated in the projection domain spanned by a class of orthogonal
radial polynomials defined on the image domain. This approach does not need an explicit
nonparametric smoothing algorithm of the unknown image function g(x1, x2).

In our second case study we examine the nonlinear stochastic dynamical model of the
following form

Y
t

= g(

p

X

i=0

µ
i

X
t°i

) + Z
t

. (4)
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Here we wish estimate the vector µ = (µ0, . . . , µp

) regardless of the shape of the nonlinear
function g(•). We can achieve this goal by using the least squares method with a data
splitting strategy where the training set is divided into two nonoverlapping parts. The first
part plays the role of a testing sequence that defines the least squares fitting function for
estimating µ, whereas the other part is used as a training sequence to form preliminary
nonparametric regression estimates for g(•). We establish sufficient conditions for the con-
vergence of our estimation algorithm and we proof its

p
n°consistency. In addition, we

present an alternative approach for estimating µ which does not need any optimization pro-
cedures. This direct strategy relies on the concept of the average derivative estimation of a
regression function. This may be an appealing method in many applications because it is
simple and noniterative. However, it is important to note that the method requires smooth
density functions of the input signal {X

t

} and can be applicable to only a limited class of
nonlinear dynamical systems.
It is also worth noting that the dynamical model in (4) forms the one-dimensional approxi-
mation of the fully nonparametric nonlinear system

Y
t

= m(X
t

,X
t°1, . . . , Xt°p

) + Z
t

.

A direct nonparametric estimate of the regression function m(•, . . . , •) can be obtained
yielding a slow rate of convergence of order O

P

(n°2/(5+p)
). The rate of estimating the

model in (4) is O
P

(n°2/5
) for any p.
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Hunting for the Best Control Chart

Mirosłk Pawlak, Electr. Engineering and Computer Science, University of Manitoba, Canada
Ewaryst Rafajłowicz, Institute of Computer Engineering, Control and Robotics,

Wrocław University of Technology, Poland
Ansgar Steland, Institute of Statistics, RWTH Aachen University, Germany

1 Introduction
We discuss requirements which are usually imposed on control charts. To fix ideas, we
shall briefly present two control charts recently proposed and studied by the authors. For
comprehensive reviews of well known control charts we refer to [1], [2], [3], and also [15],
[4], and [5]. Control charts for detection of changes in the mean characteristic of produced
items is still the most frequently used tool in quality control. On the other hand, they are
more and more frequently used in engineering diagnostics, financial economics, detecting of
changes in video sequences and many others. All of these fields impose its own requirements
on control charts. Even a model of "change" can be different in the above mentioned areas
of applications. In addition to the well known step change model, we should consider less
abrupt, slower changes, which do not even have a parametric model, or assume that the
mean after the change is unknown.

Taking the above into account, one can not hope to select one "universally good" chart,
which is uniformly sensitive to small, moderate and large shifts in the mean and still robust
against (i) departures from normality, (ii) simultaneous changes of the mean and variance,
(iii) correlation effects, and other factors.

Thus, hunting for the best chart is hopeless. What can be done instead ? At least the
following four directions of research can be suggested.

• Investigate popular control charts taking into account various quality measures.

• Develop new charts with the hope that they will have the desired properties.

• Explor merits and disadvantages when running several charts in parallel on the same
data.

• Identify the most useful features (indices) for a given application.

Feature identification is, indeed, a delicate issue, e.g., when aiming at detecting changes in
video sequences. Clearly, the above mentioned research directions are so wide that they can
be an outline of a large project rather then the contents of one paper, but we shall try to
sketch the main ideas.
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2 Criteria for selecting charts
The average run length (ARL) of a chart is the most commonly used criterion for selecting
a chart. Usually, the in-control ARL is assumed fixed (typically at 465 or 830) and the
chart with smaller out-of-control ARL is considered to be better than a chart with the
same in-control ARL but larger out-of-control ARL. However, this criterion does not take
into account the variances of ARL, which are known to be large. Fig. 1, which shows the
probability density functions of run lengths of two hyphotetical charts, assuming the same
shift in the mean and the same in-control ARL. The analysis of Fig. 1 leads to the following
question: should we prefer a chart with a smaller out-of-control ARL and large run length
variance or a chart with a slightly larger out-of-control ARL and small run length variance ?
The answer to this question is even more difficult, if we consider that also out-of-control run
lengths can have different variances.
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Figure 1: Left panel: Hyphotetical pdf’s of out-of-control run lengths of two control
charts. Assuming the same shift in the mean and the same in-control ARL, dashed
line – pdf of a chart with smaller out-of-control ARL and larger variance, solid line –
a chart with larger out-of-control ARL and smaller variance.
Right panel: Dependence of out-of-control ARL on the shift in the mean for two
charts: the binary chart (dashed line) and the CUSUM chart (solid line).

Staying within out-of-control ARL paradigm, consider its dependence on changes of the
shift, measured in æ (the dispersion of errors) units. Assuming the same out-of-control
ARL, namely 435, the in-control ARL’s of the CUSUM chart and the binary chart (recently
proposed in [11]) are shown in Fig. 1. The answer to the question: which one is better,
depends on whether we expect small or larger shifts more frequently.

The next criterion for selecting a good chart can be the probability of detecting a shift
immediately after its occurrence (zero-delay detection), assuming that there is a bound on
the probability of false alarm or on the in-control ARL. The plots, which are shon in Fig. 2
show the estimated probabilities of zero-delay detection for the following control charts: (i)
VBox chart as proposed by the authors in [10], (ii) Shewart1, i.e., the Shewart control chart
applied for individual observations, (iii) Shewart5, the Shewart chart applied to the averages
of 5 observations, and (iv) the EWMA chart.

The differences between probabilities of zero-delay detection can be noticeable for mod-
erate shifts (0.5° 1æ), while for large shifts this criterion can not distinguish, which chart
is better.
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Figure 2: Dependence of the estimated probability of detecting shift just after its
occurrence vs the shift magnitude for different charts 9described in the text).

If our aim is to detect moderate to large jumps then charts based on the so called jump-
preserving procedures are attractive (see [7], [14], and [8, 9]). Nonparametric kernel control
charts have been studied in [12] and [13]. Further, [16] combined a classic Shewhart chart
and a conforming run length chart yielding smaller ARLs for shifts larger than 0.8æ, but
that method is inferior to the EWMA chart for smaller shifts.
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Systems with n Levels of Damage

Christoph Riethmüller Institut für Mathematische Stochastik, Otto-von-Guericke-
Universität Magdeburg, Germany

Abstract: We investigate the reliability of a system. Changes of the behavior of the system
are modelled as random events. We use a Markov chain approach and obtain a lifetime model
which may be interpreted easily. Questions arise about repair and inspection policies as well
as about statistical inference.

1 Introduction
The main aspect of choosing a model is choosing an appropriate failure rate. We use a
Markov-modulated Poisson process as described in e.g. [1]. The developing of the (stochas-
tic) failure rate is given by a homogeneous, absorbing Markov chain with finite state space
{1, ..., n}. The transient states are called working levels of damage and the absorbing states
are called failure states. One motivation for this model is that a user might interprete the
levels of damage verbally:

Example: We consider the system car with the levels 1-enough engine oil, 2-low en-
gine oil and 3-engine damage. We have two transient and one absorbing state and the
corresponding generator might be

Q =

0

@

°3 2 1

0 °5 5

0 0 0

1

A .

The user (car driver) may continously observe the level of damage, so starting at level 1 two
decisions have to be made:

• Should he refill engine oil when he enters level 2?

• Should he refill engine oil (if possible) when he enters level 3?

The first question covers preventive maintenance, the second one covers repair in case of a
failure. The latter will be treated here.

2 Optimal repair
It makes sense that the repair action depends on the failure level and the level of the system
just before failure, so wlg repair is performed in virtue of a function

r : {1, ..., m}£ {m + 1, ..., n}! {1, ...,m}
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where m is the number of working levels of damage. Concerning the example we should
decide whether r(2, 3) = 1 or r(2, 3) = 2 is optimal. If we used mean repair costs as
optimality criterion, we need to calculate the expected number of failures of a certain type
up to time t:

E[N (i,j)
t

] =

Z

t

0
Q

ij

a0euQ(r)e
i

du

where a is the initial distribution, e
i

is the i-th unit vector and Q(r) is the generator of the
Markov chain obtained by repeatedly repairing using repair function r.

We use a technique from [2] to calculate matrix-exponentials but we don’t want to survey
every possible repair function. We use a heuristic approach to resrict ourselves to a little
number of repair functions. We sequentially choose repair functions such that the average
costs per time unit are minimized. Here we need the probability pij

k

that starting in level
k the next failure is of type (i, j). We introduce bilateral phase type distributions [3] and
obtain

pij

k

= °W
ki

Q
ij

,

where W is the inverse of upper-left part of Q that belongs to the working levels of the
system.
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Reliability Centered Design - Method for Design of
Products of Individual Reliability

Henrik Schnegas Hochschule Wismar, Department of Mechanical, Process and Environmental
Engineering

Abstract: All customers in industry have individual requirements for safety and reliability.
This publication shows an analytic and numerical method for design of products of individual
reliability. Because reliability in Mechanical Engineering is reported as propability of survival
we must combine mechanical and stochastic models, for example models of Boolean Algebra
and redundancy.

1 Introduction
In DIN EN ISO 12100 we find a new definition for safety of machines. A machine is safe if
exist risk is lower then allowable risk. Allowable risk is a function of probability of failure or
low-function. So we must use the Reliability Theory. The question in Engineering Design
is to integrate a required reliability in construction.

2 Method
We must install the following method in the standard VDI 2221 design process - especially in
the period of conception. At first we need the concept of new product with all components.

2.1 Risk analysis by fault tree analysis

If we know the structure of system we can start with Fault Tree Analysis (FTA). The Fault
Tree Analysis is most popular Top-Down method. In step one we define failure or low-
function as fault. In step two we identify components of high hazard potential. In step
three we must find model of boolean algebra to describe structure of reliability.

2.2 Structure of Reliability and numerical modelling

1. Series connection
In Systems of series connections all components have same failure effect. Each component
added to the system decreases the probability of system. Reliability according to the formula

R
ges.

(x) =

n

Y

i=1

R
i

(x) (1)
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2. Parallel connection
Systems of parallel connections are systems of redundancy. We know hot, warm or cold re-
dundancy. If one component or system is out of order another component ore system release
task of this component. Each component added to the system increases the probability of
system. Reliability according to the formula

R
ges.

(x) = 1°
n

Y

i=1

(1°R
i

(x)) (2)

3. Combined connection
In combined connection systems we find parallel and series components. We must combine
equations (1) and (2).

On base of Fault Tree Analysis and Boolean Algebra we can find description for reliability
for systems of high complexity. It is a kind of risk assessment.

2.3 Reversible allocation of Reliability

If we could not reach required Reliability of system R
Sys

, we must look for individual
required reliability of components R

i

. In case of construction of equal reliability we can
compute required reliability for components. We can write:

for series systems R
erf.i

=

n
p

R
sys.erf.

(3)

and

for parallel systems R
erf.i

= 1° n
p

1°R
sys.erf.

. (4)

At last we must integrate the required reliability in construction especially in geometry

2.4 Reliability Centered Design - Numerical Application

If we know the Reliability for each components, we can start the "Reliability Centered
Design". In case of fatigue stress we can use equation 5:

B
zul.

= B
N

· a

r

x
N

x
Ausl.

· a·Ø

r

ln R
Ausl.

lnR
N

(5)

Allowable stress B
zul.

is the result of equation 5. Allowable stress is a function of required
reliability R

Ausl.

and required lifetime x
Ausl.

Now we can use the standard methods for design
of components. And in the end we will get an reliability based product.

3 Summary
If we like to design products of individual reliability, we have to use models from Mechanics
and also from Stochastics. But there are also any problems in this moment. 1. There are
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not so much tables with dates about stochastic parameters of failures. So we need methods
to find parameters in test with low samplings 2. Stochastic Models for Reliability Centered
Design are not basic Know-ledgement in Mechanical Engineering. In this case we need help
of Stochastic People.
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Dimensionality Reduction Using Space-Filling
Curves with Applications to Pattern Recognition

Ewa Skubalska-Rafajłowicz Institute of Computer Engineering, Control and Robotics,
Wrocław University of Technology, Poland

1 Summary
The classical problem of constructing a multidimensional pattern classifier in the bayesian
framework is considered. The key idea of the approach is to apply a well defined quasi-
inverse of a space-filling curve in order to transform a multidimensional learning sequence to
the unit interval. Complexity of such a transformation is linear with respect to d, since we
can transform each pattern separately without constructing an approximation of the whole
space-filling curve.

Our approach is based on space-filling curves. A space-filling curve is a continuous
surjection from unit interval onto d-dimensional unit cube ( I

d

, d ∑ 1), that is, a curve
going through each point of I

d

. Space-filling curves were at first described by Peano, Hilbert,
Sierpiński and [4] as an evidence that a lower dimensional space (for example the unit interval
[0, 1]) can be mapped continuously onto a space of higher dimension. The space-filling curve
cannot be one-to-one because, in general, I

d

and I
p

are not homeomorphic whenever d 6= p
(by invariance of dimension number theorem ).

We give theoretical foundation under which consistent classifiers based on data scanned
by a space-filling curve can be build. Furthermore, we indicate the properties of the space-
filling curves, which ensure the Bayes risk consistency. The classifiers considered here are
based on the plug-in principle.

We study the following pattern recognition rules, which are based on space-filling curves:

• k-nearest neighbor algorithms,

• the family of orthogonal series classifiers,

• partitioning rules.

The key result states that the measure preserving space-filling curve based transformation
of data does not change the Bayes risk for any distribution with the support in I

d

. This
leads to a class of classifiers with the following features:

1. asymptotic optimality in the sense that the error probability of the proposed classifier
approaches the Bayes risk almost surely.

2. high degree of data compression in the learning sequence

3. fast recognition of new patterns,
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4. possibility of graphical interpretation of a decision rule and the learning sequence,
after a suitable transform,

5. easy update of the classifier when new observations are added to a learning sequence.

The choice of the sample space as the unit cube I
d

is not too restrictive, since the Bayes error
is invariant under any continuous and strictly monotone transformation (e.g. the logistic
function) of the coordinate axis.

We do not claim that a transformation based on a space-filling curve is an easy remedy for
the "curse of dimensionality". One-dimensional patterns must be stored with a sufficiently
high precision which allows to separate them in [0, 1]. This is the price that we pay for
working with one-dimensional patterns. We should also note that such a transformation of
data is non-linear, and it is not invariant under linear transformations of the feature space.

The presentation is organized as follows: we provide necessary preliminaries, including
the problem statement. Then, the basic properties of space-filling curves are discussed.
The problem of preserving class separation and the Bayes risk under space-filling curve
transformation and its inverse is elucidated. As the next step, the above mentioned families
of classifiers are described in some details. Then, their asymptotic optimality is proved in a
number of steps. Namely, the upper bounds for the bias and variance provide the basis for
the proof of the strong Bayes risk consistency of the classifiers. Attainable convergence rate
of the risk is discussed. Finally, we discuss the results of simulation studies and comparisons.
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On the Reaction Time of Moving Sum Detectors

Josef G. Steinebach Mathematical Institute, University of Cologne, Germany

Abstract: In this talk, we discuss some asymptotics, under the null hypothesis as well
as under the alternative, concerning the reaction time of on-line monitoring schemes to
detect a change in the mean. The stopping rules are based on “moving sums”, that is, they
sequentially compare a “training sample” of size m to the average of the h = h(m) most
recent observations. Perhaps surprisingly, the limit distributions (as m ! 1) crucially
depend on the asymptotic relation of h and m, posing potential problems in applications.

1 The model
In [2] we discuss some “open-end” as well as “closed-end” monitoring procedures for detecting
a change in the mean in the following location model:

X
i

= µ
i

+ "
i

, i = 1, 2, . . . ,

where {µ
i

}
i=1,2,...

are unknown means and {"
i

}
i=1,2,...

are the unobservable errors. It is
assumed that there is no change in the mean of a “training sample” of size m, i.e. that
µ

i

= µ, i = 1, . . . , m. We are interested in constructing appropriate stopping rules for
testing the null hypothesis

H0 : µ
i

= µ, i = m + 1, m + 2, . . . ,

against the (two-sided) alternative

H
A

: there is k§ ∏ 1 such that µ
i

= µ, m < i < m + k§,

and µ
i

= µ + ¢, i ∏ m + k§, with some ¢ 6= 0.

2 Stopping rules
Our rules for testing H0 versus H

A

are based on “moving sum detectors” (mosum’s), more
precisely, on comparing the quantities

X
m

=

1

m

m

X

i=1

X
i

and X
m,k

=

1

h

h°1
X

i=0

X
m+k°i

, k = 1, 2, . . . ,

where h = h(m) (∑ m). For example, we study the (closed-end) stopping rule

ø
m,T

= min

n

k : 1 ∑ k ∑ mT,
1

∞̂

Ø

ØX
m,k

°X
m

Ø

Ø > ch°1/2g(k/m)

o

, (1)

where min ; = +1, ∞̂2 is a certain variance estimator, and g is a weight function.
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In Section 3 it is shown that the constant c in (1) can be chosen such that, under H0,
lim

m!1 P{ø
m,T

< 1} = Æ, where 0 < Æ < 1 is a prescribed level. In addition, some
limiting distributions under H

A

are discussed in Section 4. Interestingly, it turns out that,
under H0, the asymptotics crucially depend on the relation between h and m, and, under
H

A

, also on the limits of k§/h and k§/m, respectively.

3 Null asymptotics
To obtain the null asymptotics, we assume that the errors {"

i

} satisfy a functional central
limit theorem (with asymptotic variance ∞2

). Then, for example, if lim

m!1 h/m = b 2 (0, 1],
we have

lim

m!1
P{ø

m,T

< 1} = P
n

sup

0∑t∑T/b

1

g(t)

Ø

Ø

Ø

W
≥

1

b
+ t

¥

°W
≥

1

b
+ t° 1

¥

° bW
≥

1

b

¥

Ø

Ø

Ø

> c
o

, (2)

where {W (t), t ∏ 0} denotes a standard Wiener process, i.e., the critical value c in (1) can
be determined via the weighted Gaussian process from (2). Similar results apply in case of
lim

m!1 h/m = 0, but require a more careful discussion (see [2]).

4 Asymptotics under the alternative
For the limiting results under the alternative, it is assumed that the errors {"

i

} satisfy
a Hungarian (KMT) type strong approximation. Various cases and stopping rules can be
discussed then, depending on the orders of h/m, k§/h, and k§/m, respectively. For example,
if h/m ! b 2 (0, 1], k§/h ! a ∏ 0, and T > ab, then, for y > 0,

lim

m!1
P

n

ø
m,T

> k§ +

p
h

|¢|y
Ø

Ø

Ø

ø
m,T

∏ k§
o

= P
n

sup

0∑t∑y

Ø

ØZ1(a) +

t

∞g(a)

Ø

Ø ∑ c
Ø

Ø

Ø

sup

0∑t∑a

Ø

ØZ1(t)
Ø

Ø ∑ c
o

,

where {Z1(t), t ∏ 0} is the weighted Gaussian process from (2) and c the critical value
therein. For other relations between h, k§, and m, a number of similar asymptotics are
available (cf. [1]).
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On Local Linear Detectors for Trend Surveillance in
Engineering and Finance

Ansgar Steland Institute of Statistics, RWTH Aachen University, Germany

Abstract: We study the problem of detecting a change in a trend disturbed by stationary
or random walk noise generalizing the related problem dealing with i.i.d. error terms. We
study procedures based on sequential local linear estimators and discuss new functional
central limit theorems (FCLTs) yielding the asymptotic distribution of the detectors, which
is required for the statistical design of the detector.

1 Introduction
Suppose we observe a sequence of random variables {Y

n

} where Y
n

is observed at the nth
time instant and observations arrive sequentially. Often the aim is to detect a change in the
mean indicating that the process is no longer in a state of statistical control. Methods based
on MOSUM, CUSUM, EWMA, and kernel statistics have been studied by many authors.
For recent results and references dealing with dependent but stationary error terms we refer
to [1, 2] and [4]. In engineering and econometrics methods which can handle the random
walk setting are also of interest. Econometric time series such as log exchange rates or log
consumer price levels come to mind, whereas in engineering series as (cumulative) damage
processes or the workload of a switch in a communication network matter. It worth noting
that detectors to distinguish between stationarity and random walk behavior have been
recently developed, we refer to [5] and the references given there.

When aiming at consistent nonparametric estimation of the process mean, local linear
estimation is nowadays a well established approach. Consistency can be ensured provided
that the time instants where observations are available get dense, asymptotically, see [3]
for the general methodology. Thus, using sequential versions of these estimators seems to
be promising to develop monitoring (surveillance) procedures and, indeed, Monte Carlo
experiments have demonstrated the outstanding performance of such procedures in many
cases. However, the sequential asymptotic distribution theory has been an open problem.

2 Methods and results
Given a sequence Y1, Y2, . . . of real-valued random variables denote the corresponding
(marginal) means by m(t) = E(Y

t

). Suppose that locally at the current time instant
t
n

= n 2 N the approximation

m(s) = Ø0n

(t
n

) + Ø1n

(t
n

)(s° t
n

) + o(1)

with unknown local intercept Ø0n

= Ø0n

(t
n

) and slope Ø1n

= Ø1n

(t
n

) holds true. Notice that
these local parameters can be very informative in an analysis, since they measure locally
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’level’ and ’derivative’ of the trend. To estimate the local parameters we fit a straight line
to the data by weighted least squares, i.e., given the data Y1, . . . , Yn

at the current time
instant t

n

, we minimize the objective

n

X

i=1

w
ni

(Y
i

° Ø0 ° Ø1(ti ° t
n

))

2

with respect to (Ø0,Ø1) 2 R2. {w
ni

} are nonnegative weights defined via a kernel function K.
Denote the minimizers by bØ0n

and bØ1n

. Notice that these estimates are F
n

= æ(Y
s

: s ∑ n)-
measureable by construction, thus providing a reasonable basis for the construction of a
stopping time, both from an intuitive and a mathematical viewpoint. Specifically, one may
consider the stopping rules L(i)

T

= inf{k ∑ n ∑ T : T°1/2
bØ
in

> c
i

}, i = 1, 2, for control limits
(critical values) c1, c2. Notice that monitoring stops when the time horizon T is reached.
Such procedures are also called closed end stopping times. We propose to select the control
limits to ensure that the type I error does not exceed a pre-specified nominal value Æ 2 (0, 1)

as T !1.
In [6] a FCLT for the stochastic process associated to the above sequential estimates has

been established for a large class of local change-point models in the presence of random
walk error terms with possibly dependent increments. The assumptions on the increments
are weak and allow for many sets of assumptions encountered in time series models and
applied work, and the class of local change-point models covers various settings of practical
interest. The relevant limit process is a functional of standard Brownian motion. The
asymptotic distribution theory for the case when the error terms are stationary and satisfy
certain additional (weak) regularity conditions is subject of current research.
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Detection of Stationarity Errors in a Linear
Regression Model with an I(1)-Regressor

Sabine Teller Institute of Statistics, RWTH Aachen University, Germany

Abstract: This paper discusses the problem to detect sequentially that the error terms in
a linear regression model with an I(1)-Regressor no longer behave as a random walk but
as a stationary process. We provide the asymptotic distribution theory for a monitoring
procedure given by a control chart, i.e. a stopping time. The main result is a functional
limit theorem for the corresponding stochastic process which implies a central limit theorem
for the control chart.

1 Motivation
Random walks have been proposed as reasonable models for discretely observed data in
many fields. Particularly, random walks have been proposed as a model for important
economic series as the gross domestic product. Therefore, an important problem is to check
sequentially whether a time series is compatible with the random walk (in-control) model
or follows an alternative (out-of-control) model under which the series is stationary.

Obviously, an erroneous answer to that question can lead to completely wrong statis-
tical conclusions, since even elementary statistics change their convergence rates and limit
distributions. Having this in mind, it is of particular interest to study sequential monitoring
(surveillance) procedures, which are designed to detect departures from the random walk
hypothesis as soon as possible.

2 The model
We aim to investigate a sequential monitoring procedure. This aim was motivated by a pre-
liminary study from Steland [2] where the author considers the problem to test sequentially
whether or not the error terms in a polynomial regression model form a random walk.

We assume that we observe sequentially a time series {Y
t

}
t2N of real-valued observations

satisfying

Y
t

= Ø0 + Ø1 · t + Æ1 · zt

+ "
t

, t 2 N, (1)

where Æ1,Ø0,Ø1 2 R are unknown regression coefficients, and we assume that the sequence
{z

t

}
t2N is integrated of order 1, denoted by {z

t

}
t2N ª I(1). We relax the notations of

stationarity and random walk and consider a more general concept: We decide in favor of
the I(0)-property (covering stationarity) or I(1)-property (covering random walks).

Under the null hypothesis, we assume that the error terms of the regression model,
defined in (1), form a random walk, i.e., are integrated of order 1. We will apply a control
chart (stopping time) providing a signal, if there is evidence that the error terms are no
longer compatible with the random walk hypothesis.
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3 The method
At each time point t ∑ T when a new observation is available, we calculate the full set of
residuals b"1(t), . . . , b"t

(t) using all available observations Y1, . . . , Yt

. We calculate a version
of the unit root test statistic U

t

, motivated by the KPSS test statistic, see Kwiatkowski
et. al. [1], and Steland [3]. The ratio control chart is now defined as

R
T

:= inf{k ∑ t ∑ T |U
t

∑ c
R

} , T ∏ k , (2)

with the convention inf ; = 1. For our asymptotic results we assume T ! 1, since
for applications, approximations of the distribution of R

T

for large time horizon T are of
interest.
c
R

is a control limit (critical value) and since monitoring stops at the latest at time T , we
may interpret the stopping time as a hypothesis test with early stopping in favor of the
alternative. Thus, one may choose c

R

to control asymptotically the type I error rate of a
false decision in favor of stationarity of the error terms, i.e.,

lim

T!1
P0 (R

t

∑ T ) = Æ , (3)

for some given Æ 2 (0, 1). P0 indicates that the probability is calculated under the null
hypothesis that the error terms form a random walk.
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Monitoring of First-Order Integer-Valued
Autoregressive Processes of Poisson Counts

Christian H. Weiß Dep. of Statistics, Inst. of Math., University of Würzburg, Germany
Murat Caner Testik Industrial Engineering Department, Hacettepe University, Turkey

Abstract: Attributes control charts for counts generally assume that the process being
monitored is independent and identically distributed in its in-control state. However, vio-
lation of this assumption in practice may significantly degrade a chart’s performance and
usefulness if the autocorrelation structure is not taken into account. We investigate the
cumulative sum (CUSUM) control chart for monitoring autocorrelated processes of counts
modeled by a Poisson INAR(1) model. Exact numerical results obtained through a bivariate
Markov Chain approach are provided for sustained shifts in any or both of these process
parameters. It is shown that the standard CUSUM chart of observations with adjusted
control limits to account for the process autocorrelation has a good overall performance in
detecting assignable causes in autocorrelated count processes.

1 Introduction
The INAR(1) model, originally introduced by [2], is the discrete-valued analogue to the
standard AR(1) model and allows to model autocorrelated processes of counts, e. g., having
a Poisson marginal distribution. [3] proposed a number of charts designed to control a
process, which follows a stationary Poisson INAR(1) model in its in-control state. Based
on a simulation study, the ability of these charts to detect several types of out-of-control
situations were investigated. It turned out that for some situations neither of the considered
charts could be used, e. g., if the autocorrelation is increased while the process mean does
not change. Therefore, we shall consider a newly developed CUSUM chart in this article,
which proves to be sensitive also to this type of out-of-control situation. In addition, the
new CUSUM procedure allows to compute average run lengths (ARL) exactly, while an
analysis of the ARL performance of most of the charts considered by [3] must be based on
simulations.

2 Poisson INAR(1) CUSUM Chart
Consider the INAR (1) process model defined by the recursion N

t

= Æ ±N
t°1 + ≤

t

, where
‘±’ represents the binomial thinning operator. A one-sided Poisson INAR(1) CUSUM chart
for detecting positive shifts from the in-control parameters ∏0 and/or Æ0 of the process N

t

is developed: Define the process {C+
t

: t = 0, 1, . . .} by

C+
0 = 0, C+

t

= max (0; N
t

° k+
+ C+

t°1) for t = 1, 2, . . . , (1)
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where k+ 2 N, k+ ∏ ∏0, is called the reference value. In operating an upper Poisson
INAR(1) CUSUM, the chart is formed by plotting the quantity C+

t

against time t. The
process is considered as being in control unless an out-of-control signal C+

t

62 {0, . . . , h+°1}
is triggered, where h+ 2 N is the control limit. The ARLs of the upper-sided CUSUM chart
can be computed exactly with the Markov chain approach of [1], since the bivariate process
(N

t

, C+
t

)N proves to be a discrete Markov chain.

3 Performance and design
Performance of the CUSUM chart in detecting changes in both the process mean ∏ and the
dependence parameter Æ were investigated. We searched for possible integer h+ and k+

pairs and designed charts such that the in-control ARL0 is about 500. For the considered
in-control values ∏0 = 2.5, 5, 7.5, 10 and 15, and Æ0 = 0.25, 0.50 and 0.75, the performance
of the designed charts were evaluated under various shift scenarios in either or both of the ∏0

and Æ0 values. It turns out that this CUSUM scheme generally has a superior performance
in detecting increases in the parameters than any of the other proposed charts for Poisson
INAR(1) models. Based on the ARL results, guidelines were also derived for the chart
design.

4 A real-data example
To illustrate design and performance of the Poisson INAR(1) CUSUM chart, we continue
the real-data example of [3], who analyzed count data about accesses to the server of the
Department of Statistics of the University of Würzburg collected on 29 November 2005. [3]
showed that the data can be modeled by an INAR(1) model with parameters ∏ = 1.28 and
Æ = 0.29. We shall consider the time series collected a week later on 6 December 2005. Based
on the above in-control model, we design a CUSUM chart with (h+, k+

) = (8, 2), leading to
an ARL0 = 419.043, and a CUSUM chart with (h+, k+

) = (4, 3), having ARL0 = 506.915.
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Surveillance of the Risk Behaviour of a Time
Dependent Process

Wolfgang Schmid Department of Statistics, European University Viadrina, Germany
Svitlana Zabolotska Department of Statistics, European University Viadrina, Germany

Abstract: Two new cumulative sum control charts for detecting changes in the variance of
a time series are introduced. In an extensive simulation study the introduced control charts
are compared with existing cumulative sum type control schemes for the variance. In order
to asses the performance of the schemes both the average run length and the maximum
expected delay are used. The target process is assumed to be an autoregressive process of
order 1 (AR(1)).

1 Introduction
Several authors showed that control charts for independent variables, like e.g. the Shewhart,
the EWMA (exponentially weighted moving average), and the CUSUM (cumulative sum)
scheme, cannot be directly applied to time series. It turns out to be necessary to take the
structure of the time series into account. In the last years some control charts for time series
have been introduced. Most of the papers are focused on monitoring the mean behavior of
a time series. In this work we deal with the detection of a changes in the variance. This
problem is of great interest in practice since the variance is a frequently applied measure for
the risk. This motivates the need of monitoring tools, that can detect a shift in the variance
of an observed process as quickly as possible.

Because of the complicated structure of the probability distribution of a stationary Gaus-
sian process variance charts for such processes have not been derived up to now by using
the log likelihood ratio approach or the sequential probability ratio test. The starting point
of the considerations is usually an independent normal sample. The CUSUM scheme for
independent variables is derived and after that the same recursion is applied to stationary
processes (cf.[1]). It is obvious that this procedure is unsatisfactory.

2 Main results
In our paper ([2]) we introduce two CUSUM control schemes for Gaussian processes for
detecting changes in the variance. We derive these control schemes from the log likelihood
ratio approach and the related sequential probability ratio test. As an example we consider
the control statistics for autoregressive process of order 1.

Now the obvious question is whether the new control schemes outperform the well-known
classical control charts. In an extensive simulation study we compare these control schemes
classical control schemes based on i.i.d. assumption. As measures for the performance of
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control schemes the average run length (ARL) and the maximum expected delay are taken.
All charts are calibrated such that the in-control ARL is the same if no change is present.
Their behavior is analyzed with respect to a scale deviation.

It is shown that the new control charts (which was derived over the log likelihood ratio
approach) provides better result in many situations. These control charts can be used very
effectively for monitoring structural deviations in the volatility of a financial time series.
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Specifications for Prediction Procedures

Luis Zitzmann Volkswirtschaftliches Institut, Universität Würzburg, Germany

Abstract: The ability to develop stochastic models for making reliable and accurate pre-
dictions will probably turn out to be the key technology for society and industry of the 21st
century. However, so far, there is no ISO standard for producing prediction procedures safe-
guarding the usefulness and reproducibility of predictions. As a consequence many different
procedures are used yielding divers predictions for the same situation leading almost nec-
essarily to confusion and to wrong decisions. The described circumstances can be observed
for instance in the case of predictions of the gross domestic product (GDP), which play an
important role in Political Economy. Many institutions, organizations and governmental
offices produce and circulate continuously different numbers as predictions that practically
never occur.

In my talk I will present specifications for prediction procedures that could be used for
a prediction standard similar to standards that exist for almost every product which is sold
on the market. If such a standard would exist, a prediction not meeting the specifications
could be classified as nonconforming and discarded from any decision-making process.
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