Fractional processes: New limit theorems and statistical
inference

Mark Podolskij SMSA 2019, Dresden

Aarhus University, Denmark

QETILIN o
O

4,
&

9
Ysis. 1o

e SOLy,

&

RoTaS
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m Limit theorems and statistical inference

m Fractional stable motion and its properties

m Some probabilistic results

m Estimation methods and asymptotic results



Fractional Brownian motion

m Definition: The scaled fBm Z, = B with Hurst parameter
H € (0,1) is a zero mean Gaussian process characterised by

1
E [B{'B}] = = (2" + 2 — |t — sPPH)

m Properties: fBm has stationary increments and it is self-similar
with index H, i.e.

d
(Zat)ter, = ( HZt)tE]R+7 a>0

m Smoothness: It holds that

Z e CcH=([0,1)) almost surely



Representations of a fractional Brownian motion

There exist various ways of representing a fBm through a Brownian
motion W.

(i) Mandelbrot-van Ness representation:
Z; = const - / {(t — s)il_l/2 — (75)1_1/2} dWs
R
where x4 = max{0,x} and W is a Brownian motion.

(i) Harmonizable representation:

B exp(its) — 1
Zt = const - /]R W dws

where W is a certain complex Gaussian measure.



Statistical inference: Optimal rates of convergence

We now demonstrate optimal rates of convergence for statistical
estimation of

0 = (o, H)

in low and high frequency setting.

Theorem: [Dahlhaus (89), Coeurjolly and Istas (01)]

(i) Low frequency: The optimal estimation rate for 6 is

(v, )

(ii) High frequency: The optimal estimation rate for 6 is

(v/n/logn,v/n)

If o is known the optimal estimation rate for H is \/nlogn .




Some limit theorems in the high frequency setting

Theorem: [Breuer and Major (83), Taqqu (79)] Define
V(Z;p)o=n PN |ATZIP with  A7Z =Zy,— Zjio1yn
i=1
(i) Law of large numbers: As n — oo
V(Z;p)n — oPm,  where  m,:=E[N(0,1)|"]

(ii) Central limit theorem: When H € (0,3/4) we obtain a central limit
theorem

Vi (V(Z;p)n = 0Pmy) =5 N (0,25, 1)
If H € (3/4,1) we have that

2" (V(Z; p)n — 0P mp) ~9, Rosenblatt rv




Estimation of the parameter 6 = (o, H)

m Estimation of H: We use the ratio statistic

R(p)n = Zgzz |Zijn — Z(f—z)/n!: P oo
Sim [ Zipn = Ziyn]

Hence, the obvious estimator of the parameter H is

~

H(p)n := p~log, R(p)s
m Estimation of 02: Now, we define the plug-in estimator
o ~ n
02(p)n i= 71PN N A 72 2 52
i=1

m Convergence rates: When H € (0,3/4) the convergence rate is

(v/n/ log n, /)



Related work

m Brouste and Fukasawa (17) show local asymptotic normality of the
fBm in high frequency regime.

m Bardet and Surgailis (13), Lebovits and P. (17) investigate
non-parametric estimation of the Hurst function for the
multifractional Brownian motion.

m Barndorff-Nielsen, Corcuera and P. (09) investigate statistical
inference for integrals wrt Gaussian processes in high frequency
regime.



Small ball probabilities

Theorem: [Chigansky and Kleptsyna (18)] Let K denote the covariance
kernel of a standard fBm. Define the operator

1
Kf(t) = / K(s, t)f(s)ds
0
Then K admits a countable spectrum (\,),>1 and

Ap = sin(mH)[(2H 4 1)v, 21

n

where
vy, =7(n—1/2) 4+ m(1 —2H)/4 + arcsin (/H/ 1+ /,%,) + O(1/n)

Moreover, it holds

P (||BH||2 <e)n~ Cre") exp (—ﬁH&:_l/H) ase —0




How large is the class of self-similar stable processes with

stationary increments?
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Characterisation of stationary stable processes

Theorem: [Rosinski (95)] Every stationary symmetric a-stable process
(Z¢)ter possess a unique (in distribution) decomposition

Z=7"4+2>+2%  where
m Z' is a mixed moving average process

7! :/A/Rg(x,t—u)N(dx, )

where N is a symmetric a-stable measure on A x R.

m Z2 is a harmonizable process
7= /exp(itu)N(du)
JR

where N is a complex isotropic a-stable measure.

m Z3 is generated by a certain conservative flow.
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Fractional stable motion

m Definition: The fractional stable motion (X;):er (fsm) is defined by

Xo= [ {(e=9f = (=90} a,

where H € (0,1) and (L¢)ter is a SaS Lévy motion with o € (0, 2)
and scale parameter o > 0.

m Stable Lévy processes: A SaS Lévy motion (L;):cr with scale
parameter o > 0 is fully characterised by stationary and independent
increments, and by the characteristic function

Elexp(itL1)] = exp(—c®|t]|“) teR

m Probabilistic structure: For H # 1/« the fsm is neither Markovian
nor a Lévy process.
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Fractional stable motion: Properties

m Marginal distributions: All marginal distributions of (X;):cr are SasS.
In particular

Blexp(iuX)] = ep(—o°altl*), e = [ [(c= 977~ (=) a5
R

m Self-similarity: The process (X;)tcr is self-similar with index
H e (0,1).

m Path properties I: If H — 1/« > 0 the process (X;):cr is locally
Holder continuous of any order up to H — 1/cv.

m Path properties II: If H —1/a < 0 the process (X;)tcr has
unbounded path on compact intervals.
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Paths behaviour of a fractional stable
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High frequency statistics

m Higher order increments: We denote by A7, X the kth order
increment of X at stage i/n, i.e.

k
[k
AN X = Z(—l)f(,)X(,-_j)/n i>k
. s j
J
For example, A,’-771X = X,-/,, — X(,-,l)/,,.

m Main statistics: Our probabilistic tools are statistics of the form

V(FiK)n:=an Y f (baA]4X)
i=k

where a, and b, are certain deterministic sequences.
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Some examples

m The most useful examples in statistics are:

A(x)=|x/P p>0 (power variation)
(x)=|x|"" pe(0,1) (negative power variation)
f3(x) = cos(ux) or sin(ux) (empirical characteristic function)
(%) = L—oo,u(x) (empirical distribution function)
fs(x) = log(|x])1{xx0} (logarithmic function)

m The power variation case f;(x) = |x|P has been investigated in
Basse-O’Connor, Lachieze-Rey and P. (17). Previously, no theoretical
results have been established outside this class of functions.

16



Law of large numbers: Notations

m When Y is a symmetric a-stable random variable with scale
parameter p > 0 we write

Y ~ SaS(p)

m We introduce the function

hi(x) = i(—l)f(k.) (x=E* xeRr

j=0 J

m (Tm)m>1 denote the jump times of L. We also introduce a sequence
of random variables

(Um)ms1 iid. ~ U(0,1)

which is independent of L.
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Law of large numbers: Theory

Theorem: Assume that « € (0,2) and H—1/a > 0.

(i) When f € CP(R) for some p > and f(0) = .. = fIP1(0) = 0, then
it holds

z":f(anl/aAg’kx)# 3 if(ALTmhk(/JrUm))
i=k

m:Ty€[0,1] /=0

(ii) Assume that E[|f(L1)|] < co. Then it holds

*Zf (A7, X) _>E[f( ), S~ SaS(o|lhlla)
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First applications

m Estimation of H: For p € (0,1), we use the ratio statistic

—p
2z [ Xin = Xic2ynl ” ®, oo
n —p
>t [Xijn = X(i—1)/a]
Hence, the obvious estimator of the parameter H is
H(=p)n := —p~" logy R(—p)a

m Estimation of (o, «): It holds that

R(=p)n =

1 1 n P a
on(u) == - Zcos (un" AT X) — @(u) = exp (—|u || hel|a|®)
i—k

The latter consistency result can be used to estimate (o, «v).
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Central limit theorem: Assumptions

m Appell rank: To determine the weak limit theory associated with
case (ii), we introduce the function
®,(x) = E[f(S+x)] - E[f(5), S~ SaS(p)
We define the Appell rank m7 by
my = min{r > 1: Cb(p')(O) # 0}

m Assumptions on ®: We assume that the map (p, x) — ®,(x) is in
CH2(R, x R) along with some boundedness and growth conditions
on derivatives.

m Notation:

n

V(Ff; k)p = % > fF(n"AnX), V(f; k) := E[f(S)]
i=k
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Central limit theorems

Theorem: Assume that L ~ SaS(o) and E[f?(L;)] < oo.

(i) When k > H 4+ 1/a we obtain

Vn(V(F; k), — V(F; k) -2 N(0, v2)

(i) When m’ > 2 for po = 0| hilo and k < H + 1/ we obtain

a(k—H)

nat=me (V(f; k), — V(£ k)) - S, = a(k — H) + 1 — stable.

(iii) When m% =1 for pg = ol|h||la, € (1,2) and k < H+1 -1/

Po

nH(V(F k) — V(£ k) - S; = o — stable.
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Estimation for H — 1/« > 0 in high frequency

m In the continuous setting H — 1/a > 0 we necessarily have that
€ (1,2). Hence, the statistics

Alp)y  and o) = oo (H(P)n, )
are asymptotically normal if p < 1/2 and k > 2.

m To estimate the parameter (o, o, H) it suffices to use Fl(p),, and
vn(u), u € {1,2}. By delta method we obtain asymptotically normal
estimators with convergence rate

(v/n/logn,/n/logn,/n)

m In the following simulation study the true parameter is
(o,,H) =(0.3,1.8,0.8), p=10.4, k =2 and
n =100, 1.000, 10.000.
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Numerical results
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Estimation of 0 = (o, @) in low frequency setting

m Statistical problem: We consider the fsm model

Xo= [ {(e= ol = (o}

observed at low frequency Xi, Xz, ..., X, with known H.

m Minimal contrast estimator: To estimate the parameter
0 =(0,a) € ©® =R, x (0,2), we introduce

1 < a.s. «a
n(u) = =D cos (ul; kX) +% po(u) 1= exp (—|uo|hu|a|*)
i=k

For a positive weight function w € L}(R. ), the minimal contrast
estimator is defined by

0 € argmingeo|lvn — wolliz, == argmineee/ (1) — o (u) Pw(u)du

+
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Asymptotic theory for 9]

Theorem: Assume that k > 2.
(i) It holds that 6, =5 ¢ and
fid.i.
Vn(on(u) —po(u)) = G

where G is a certain Gaussian process on R .

(ii) Define the function F(¢,6) := ||ty — @gl|?. . Then we obtain the
central limit theorem

_ )
NG (9n - 9) 9, DHessyF(pg, )t (<aa-“"9’ G >La)
J j=1.2
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Thank you very much for your attention!
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