Fractional processes: New limit theorems and statistical inference

Mark Podolskij

SMSA 2019, Dresden

Aarhus University, Denmark

Outline

- Fractional Brownian motion and its properties
- Limit theorems and statistical inference
- Fractional stable motion and its properties
- Some probabilistic results
- Estimation methods and asymptotic results

Fractional Brownian motion

■ Definition: The scaled fBm $Z_t = \sigma B_t^H$ with Hurst parameter $H \in (0,1)$ is a zero mean Gaussian process characterised by

$$\mathbb{E}\left[B_{t}^{H}B_{s}^{H}\right] = \frac{1}{2}\left(t^{2H} + s^{2H} - |t - s|^{2H}\right)$$

Properties: fBm has stationary increments and it is self-similar with index H, i.e.

$$(Z_{at})_{t\in\mathbb{R}_+}\stackrel{d}{=}(a^HZ_t)_{t\in\mathbb{R}_+}, \qquad a>0$$

■ Smoothness: It holds that

$$Z \in C^{H-}([0,1])$$
 almost surely

3

Representations of a fractional Brownian motion

There exist various ways of representing a fBm through a Brownian motion W.

(i) Mandelbrot-van Ness representation:

$$Z_t = \operatorname{const} \cdot \int_{\mathbb{R}} \left\{ (t-s)_+^{H-1/2} - (-s)_+^{H-1/2} \right\} dW_s$$

where $x_{+} = \max\{0, x\}$ and W is a Brownian motion.

(ii) Harmonizable representation:

$$Z_t = \operatorname{const} \cdot \int_{\mathbb{R}} \frac{\exp(its) - 1}{|s|^{H+1/2}} \ d\mathbb{W}_s$$

where W is a certain complex Gaussian measure.

4

Statistical inference: Optimal rates of convergence

We now demonstrate optimal rates of convergence for statistical estimation of

$$\theta = (\sigma, H)$$

in low and high frequency setting.

Theorem: [Dahlhaus (89), Coeurjolly and Istas (01)]

(i) Low frequency: The optimal estimation rate for θ is

$$(\sqrt{n}, \sqrt{n})$$

(ii) High frequency: The optimal estimation rate for θ is

$$(\sqrt{n}/\log n, \sqrt{n})$$

If σ is known the optimal estimation rate for H is $\sqrt{n} \log n$.

Some limit theorems in the high frequency setting

Theorem: [Breuer and Major (83), Taqqu (79)] Define

$$V(Z; p)_n = n^{-1+pH} \sum_{i=1}^n |\Delta_i^n Z|^p$$
 with $\Delta_i^n Z = Z_{i/n} - Z_{(i-1)/n}$

(i) Law of large numbers: As $n \to \infty$

$$V(Z; p)_n \stackrel{\mathbb{P}}{\longrightarrow} \sigma^p m_p$$
 where $m_p := \mathbb{E}[|\mathcal{N}(0, 1)|^p]$

(ii) Central limit theorem: When $H \in (0,3/4)$ we obtain a central limit theorem

$$\sqrt{n}(V(Z;p)_n - \sigma^p m_p) \stackrel{d}{\longrightarrow} \mathcal{N}(0, a_{\sigma,H}^2)$$

If $H \in (3/4,1)$ we have that

$$n^{2-2H}(V(Z;p)_n - \sigma^p m_p) \stackrel{d}{\longrightarrow} \text{Rosenblatt rv}$$

6

Estimation of the parameter $\theta = (\sigma, H)$

■ Estimation of H: We use the ratio statistic

$$R(p)_n := \frac{\sum_{i=2}^n |Z_{i/n} - Z_{(i-2)/n}|^p}{\sum_{i=1}^n |Z_{i/n} - Z_{(i-1)/n}|^p} \xrightarrow{\mathbb{P}} 2^{pH}$$

Hence, the obvious estimator of the parameter H is

$$\widehat{H}(p)_n := p^{-1} \log_2 R(p)_n$$

Estimation of σ^2 : Now, we define the plug-in estimator

$$\widehat{\sigma^2}(p)_n := n^{-1+2\widehat{H}(p)_n} \sum_{i=1}^n |\Delta_i^n Z|^2 \stackrel{\mathbb{P}}{\longrightarrow} \sigma^2$$

■ Convergence rates: When $H \in (0, 3/4)$ the convergence rate is

$$(\sqrt{n}/\log n, \sqrt{n})$$

7

Related work

- Brouste and Fukasawa (17) show local asymptotic normality of the fBm in high frequency regime.
- Bardet and Surgailis (13), Lebovits and P. (17) investigate non-parametric estimation of the Hurst function for the multifractional Brownian motion.
- Barndorff-Nielsen, Corcuera and P. (09) investigate statistical inference for *integrals wrt Gaussian processes* in high frequency regime.

Small ball probabilities

Theorem: [Chigansky and Kleptsyna (18)] Let K denote the covariance kernel of a standard fBm. Define the operator

$$\mathcal{K}f(t) := \int_0^1 K(s,t)f(s)ds$$

Then \mathcal{K} admits a countable spectrum $(\lambda_n)_{n\geq 1}$ and

$$\lambda_n = \sin(\pi H)\Gamma(2H+1)\nu_n^{-2H-1}$$

where

$$u_n = \pi(n - 1/2) + \pi(1 - 2H)/4 + \arcsin\left(I_H/\sqrt{1 + I_H^2}\right) + O(1/n)$$

Moreover, it holds

$$\mathbb{P}\left(\|B^H\|_2 \le \varepsilon\right) \sim C_H \varepsilon^{\gamma(I_H)} \exp\left(-\beta_H \varepsilon^{-1/H}\right) \quad \text{as } \varepsilon \to 0$$

Ω

Question

How large is the class of *self-similar stable* processes with *stationary increments*?

Characterisation of stationary stable processes

Theorem: [Rosinski (95)] Every stationary symmetric α -stable process $(Z_t)_{t\in\mathbb{R}}$ possess a unique (in distribution) decomposition

$$Z = Z^1 + Z^2 + Z^3 \qquad \text{where}$$

■ Z^1 is a *mixed moving average* process

$$Z_t^1 = \int_A \int_{\mathbb{R}} g(x, t - u) N(dx, du)$$

where **N** is a symmetric α -stable measure on $A \times \mathbb{R}$.

 \blacksquare Z^2 is a *harmonizable* process

$$Z_t^2 = \int_{\mathbb{R}} \exp(itu) \overline{N}(du)$$

where \overline{N} is a complex isotropic α -stable measure.

■ Z^3 is generated by a certain *conservative flow*.

Fractional stable motion

■ *Definition:* The fractional stable motion $(X_t)_{t \in \mathbb{R}}$ (fsm) is defined by

$$X_t = \int_{\mathbb{R}} \left\{ \left(t - s \right)_+^{H - 1/\alpha} - \left(- s \right)_+^{H - 1/\alpha} \right\} dL_s$$

where $H \in (0,1)$ and $(L_t)_{t \in \mathbb{R}}$ is a S α S Lévy motion with $\alpha \in (0,2)$ and scale parameter $\sigma > 0$.

■ Stable Lévy processes: A S α S Lévy motion $(L_t)_{t\in\mathbb{R}}$ with scale parameter $\sigma>0$ is fully characterised by stationary and independent increments, and by the characteristic function

$$\mathbb{E}[\exp(itL_1)] = \exp(-\sigma^{\alpha}|t|^{\alpha}) \qquad t \in \mathbb{R}$$

■ Probabilistic structure: For $H \neq 1/\alpha$ the fsm is neither Markovian nor a Lévy process.

Fractional stable motion: Properties

■ Marginal distributions: All marginal distributions of $(X_t)_{t \in \mathbb{R}}$ are $S\alpha S$. In particular

$$\mathbb{E}[\exp(iuX_t)] = \exp(-\sigma^{\alpha}c_t|t|^{\alpha}), \quad c_t = \int_{\mathbb{R}} \left| (t-s)_+^{H-1/\alpha} - (-s)_+^{H-1/\alpha} \right|^{\alpha} ds$$

- Self-similarity: The process $(X_t)_{t\in\mathbb{R}}$ is self-similar with index $H \in (0,1)$.
- Path properties I: If $H-1/\alpha>0$ the process $(X_t)_{t\in\mathbb{R}}$ is locally Hölder continuous of any order up to $H-1/\alpha$.
- Path properties II: If $H-1/\alpha < 0$ the process $(X_t)_{t \in \mathbb{R}}$ has unbounded path on compact intervals.

Paths behaviour of a fractional stable motion

High frequency statistics

■ Higher order increments: We denote by $\Delta_{i,k}^n X$ the kth order increment of X at stage i/n, i.e.

$$\Delta_{i,k}^n X := \sum_{j=0}^k (-1)^j \binom{k}{j} X_{(i-j)/n} \qquad i \ge k$$

For example, $\Delta_{i,1}^n X = X_{i/n} - X_{(i-1)/n}$.

Main statistics: Our probabilistic tools are statistics of the form

$$V(f;k)_n := a_n \sum_{i=k}^n f\left(b_n \Delta_{i,k}^n X\right)$$

where a_n and b_n are certain deterministic sequences.

Some examples

■ The most useful examples in statistics are:

$$f_1(x) = |x|^p \quad p > 0$$
 (power variation) $f_2(x) = |x|^{-p} \quad p \in (0,1)$ (negative power variation) $f_3(x) = \cos(ux)$ or $\sin(ux)$ (empirical characteristic function) $f_4(x) = 1_{(-\infty,u]}(x)$ (empirical distribution function) $f_5(x) = \log(|x|) 1_{\{x \neq 0\}}$ (logarithmic function)

■ The power variation case $f_1(x) = |x|^p$ has been investigated in Basse-O'Connor, Lachieze-Rey and P. (17). Previously, no theoretical results have been established outside this class of functions.

Law of large numbers: Notations

■ When Y is a symmetric α -stable random variable with scale parameter $\rho > 0$ we write

$$Y \sim S\alpha S(\rho)$$

■ We introduce the function

$$h_k(x) = \sum_{j=0}^k (-1)^j \binom{k}{j} (x-j)_+^{H-1/\alpha} \qquad x \in \mathbb{R}$$

■ $(T_m)_{m\geq 1}$ denote the jump times of L. We also introduce a sequence of random variables

$$(U_m)_{m\geq 1}$$
 i.i.d. $\sim \mathcal{U}(0,1)$

which is independent of L.

Law of large numbers: Theory

Theorem: Assume that $\alpha \in (0,2)$ and $H-1/\alpha > 0$.

(i) When $f \in C^p(\mathbb{R})$ for some $p > \alpha$ and $f(0) = ... = f^{[p]}(0) = 0$, then it holds

$$\sum_{i=k}^{n} f\left(n^{H-1/\alpha} \Delta_{i,k}^{n} X\right) \stackrel{d}{\longrightarrow} \sum_{m: T_{m} \in [0,1]} \sum_{l=0}^{\infty} f\left(\Delta L_{T_{m}} h_{k}(l+U_{m})\right)$$

(ii) Assume that $\mathbb{E}[|f(L_1)|] < \infty$. Then it holds

$$\frac{1}{n}\sum_{i=k}^{n}f\left(n^{H}\Delta_{i,k}^{n}X\right)\stackrel{\mathbb{P}}{\longrightarrow}\mathbb{E}[f(S)],\quad S\sim S\alpha S(\sigma\|h_{k}\|_{\alpha})$$

First applications

■ Estimation of H: For $p \in (0,1)$, we use the ratio statistic

$$R(-p)_n := \frac{\sum_{i=2}^n |X_{i/n} - X_{(i-2)/n}|^{-p}}{\sum_{i=1}^n |X_{i/n} - X_{(i-1)/n}|^{-p}} \stackrel{\mathbb{P}}{\longrightarrow} 2^{-pH}$$

Hence, the obvious estimator of the parameter H is

$$\widehat{H}(-p)_n := -p^{-1} \log_2 R(-p)_n$$

Estimation of (σ, α) : It holds that

$$\varphi_n(u) := \frac{1}{n} \sum_{i=k}^n \cos\left(u n^H \Delta_{i,k}^n X\right) \xrightarrow{\mathbb{P}} \varphi(u) := \exp\left(-|u\sigma| \|h_k\|_{\alpha}|^{\alpha}\right)$$

The latter consistency result can be used to estimate (σ, α) .

Central limit theorem: Assumptions

 Appell rank: To determine the weak limit theory associated with case (ii), we introduce the function

$$\Phi_{\rho}(x) := \mathbb{E}[f(S+x)] - \mathbb{E}[f(S)], \qquad S \sim S\alpha S(\rho)$$

We define the *Appell rank* m_{ρ}^{\star} by

$$m_{\rho}^{\star} := \min\{r \geq 1: \; \Phi_{\rho}^{(r)}(0) \neq 0\}$$

- Assumptions on Φ : We assume that the map $(\rho, x) \mapsto \Phi_{\rho}(x)$ is in $C^{1,2}(\mathbb{R}_+ \times \mathbb{R})$ along with some boundedness and growth conditions on derivatives.
- Notation:

$$V(f;k)_n := \frac{1}{n} \sum_{i=k}^n f\left(n^H \Delta_{i,k}^n X\right), \qquad V(f;k) := \mathbb{E}[f(S)]$$

Central limit theorems

Theorem: Assume that $L \sim S\alpha S(\sigma)$ and $\mathbb{E}[f^2(L_1)] < \infty$.

(i) When $k > H + 1/\alpha$ we obtain

$$\sqrt{n}(V(f;k)_n - V(f;k)) \stackrel{d}{\longrightarrow} \mathcal{N}(0, v_f^2)$$

- (ii) When $m_{\rho_0}^{\star} \geq 2$ for $\rho_0 = \sigma \|h_k\|_{\alpha}$ and $k < H + 1/\alpha$ we obtain $n^{\frac{\alpha(k-H)}{\alpha(k-H)+1}} \left(V(f;k)_n V(f;k)\right) \stackrel{d}{\longrightarrow} S_2 = \alpha(k-H) + 1 \text{stable}.$
- (iii) When $m_{\rho_0}^{\star}=1$ for $\rho_0=\sigma\|h_k\|_{\alpha}$, $\alpha\in(1,2)$ and $k< H+1-1/\alpha$: $n^{k-H}\left(V(f;k)_n-V(f;k)\right)\stackrel{d}{\longrightarrow}S_1=\alpha-\text{stable}.$

Estimation for $H - 1/\alpha > 0$ in high frequency

■ In the continuous setting $H-1/\alpha>0$ we necessarily have that $\alpha\in(1,2)$. Hence, the statistics

$$\widehat{H}(p)_n$$
 and $\varphi_n(u) = \varphi_n\left(\widehat{H}(p)_n, u\right)$

are asymptotically normal if p < 1/2 and $k \ge 2$.

■ To estimate the parameter (σ, α, H) it suffices to use $\widehat{H}(p)_n$ and $\varphi_n(u)$, $u \in \{1, 2\}$. By delta method we obtain asymptotically normal estimators with convergence rate

$$(\sqrt{n}/\log n, \sqrt{n}/\log n, \sqrt{n})$$

■ In the following simulation study the true parameter is $(\sigma, \alpha, H) = (0.3, 1.8, 0.8)$, p = 0.4, k = 2 and n = 100, 1.000, 10.000.

Numerical results

■ Statistical problem: We consider the fsm model

$$X_t = \int_{\mathbb{R}} \left\{ (t-s)_+^{H-1/\alpha} - (-s)_+^{H-1/\alpha} \right\} dL_s$$

observed at low frequency X_1, X_2, \dots, X_n with known H.

■ *Minimal contrast estimator:* To estimate the parameter $\theta = (\sigma, \alpha) \in \Theta = \mathbb{R}_+ \times (0, 2)$, we introduce

$$\varphi_n(u) := \frac{1}{n} \sum_{i=k}^n \cos(u\Delta_{i,k}X) \xrightarrow{a.s.} \varphi_{\theta}(u) := \exp(-|u\sigma||h_k||_{\alpha}|^{\alpha})$$

For a positive weight function $w \in L^1(\mathbb{R}_+)$, the minimal contrast estimator is defined by

$$\widehat{\theta}_n \in \operatorname{argmin}_{\theta \in \Theta} \|\varphi_n - \varphi_\theta\|_{L^2_w} := \operatorname{argmin}_{\theta \in \Theta} \int_{\mathbb{R}^+} |\psi(u) - \varphi_\theta(u)|^2 w(u) du$$

Asymptotic theory for $\widehat{\theta}_n$

Theorem: Assume that $k \geq 2$.

(i) It holds that $\widehat{\theta}_n \stackrel{a.s.}{\longrightarrow} \theta$ and

$$\sqrt{n}\left(\varphi_n(u)-\varphi_\theta(u)\right)\stackrel{f.i.d.i.}{\longrightarrow} G$$

where G is a certain Gaussian process on \mathbb{R}_+ .

(ii) Define the function $F(\psi,\theta):=\|\psi-\varphi_\theta\|_{L^2_w}^2$. Then we obtain the central limit theorem

$$\sqrt{n}\left(\widehat{\theta}_n - \theta\right) \stackrel{d}{\longrightarrow} 2\mathsf{Hess}_{\theta} F(\varphi_{\theta}, \theta)^{-1} \left(\left\langle \frac{\partial}{\partial \theta_j} \varphi_{\theta}, G \right\rangle_{L^2_w} \right)_{j=1,2}$$

Thank you very much for your attention!